These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 1376789)

  • 1. Isoproterenol increases defibrillation energy requirements in dogs.
    Wang M; Dorian P; Ogilvie RI
    J Cardiovasc Pharmacol; 1992 Feb; 19(2):201-8. PubMed ID: 1376789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DL and D sotalol decrease defibrillation energy requirements.
    Wang M; Dorian P
    Pacing Clin Electrophysiol; 1989 Sep; 12(9):1522-9. PubMed ID: 2476781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of acute intravenous and chronic oral amiodarone on defibrillation energy requirements.
    Fain ES; Lee JT; Winkle RA
    Am Heart J; 1987 Jul; 114(1 Pt 1):8-17. PubMed ID: 3604876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of encainide and its metabolites on energy requirements for defibrillation.
    Fain ES; Dorian P; Davy JM; Kates RE; Winkle RA
    Circulation; 1986 Jun; 73(6):1334-41. PubMed ID: 3084128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. d-Sotalol decreases defibrillation energy requirements in humans: a novel indication for drug therapy.
    Dorian P; Newman D; Sheahan R; Tang A; Green M; Mitchell J
    J Cardiovasc Electrophysiol; 1996 Oct; 7(10):952-61. PubMed ID: 8894937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between successful defibrillation and delivered energy in open-chest dogs: reappraisal of the "defibrillation threshold" concept.
    Davy JM; Fain ES; Dorian P; Winkle RA
    Am Heart J; 1987 Jan; 113(1):77-84. PubMed ID: 3799444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Success rate versus defibrillation energy: temporal profile and the most efficient defibrillation threshold.
    Murakawa Y; Gliner BE; Thakor NV
    Am Heart J; 1989 Sep; 118(3):451-8. PubMed ID: 2773769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal cardiac defibrillation: histopathology and temporal stability of defibrillation energy requirements.
    Fain ES; Billingham M; Winkle RA
    J Am Coll Cardiol; 1987 Mar; 9(3):631-8. PubMed ID: 3819207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of an unsuccessful subthreshold shock on the energy requirement for the subsequent defibrillation.
    Murakawa Y; Gliner BE; Shankar B; Thakor NV
    Am Heart J; 1989 May; 117(5):1065-9. PubMed ID: 2711966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Barium decreases defibrillation energy requirements.
    Dorian P; Witkowski FX; Penkoske PA; Feder-Elituv RS
    J Cardiovasc Pharmacol; 1994 Jan; 23(1):107-12. PubMed ID: 7511721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of isoproterenol on facilitation of electrical defibrillation by E-4031.
    Sezaki K; Murakawa Y; Inoue H; Nakajima T; Usui M; Yamashita T; Ajiki K; Oikawa N; Iwasawa K; Omata M
    J Cardiovasc Pharmacol; 1995 Mar; 25(3):393-6. PubMed ID: 7769803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of flecainide on defibrillation thresholds in the anesthetized dog.
    Hernandez R; Mann DE; Breckinridge S; Williams GR; Reiter MJ
    J Am Coll Cardiol; 1989 Sep; 14(3):777-81. PubMed ID: 2504799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lidocaine causes a reversible, concentration-dependent increase in defibrillation energy requirements.
    Dorian P; Fain ES; Davy JM; Winkle RA
    J Am Coll Cardiol; 1986 Aug; 8(2):327-32. PubMed ID: 3734254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved internal defibrillation success with shocks timed to the morphology electrogram.
    Hsu W; Lin Y; Lang DJ; Jones JL
    Circulation; 1998 Aug; 98(8):808-12. PubMed ID: 9727552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oral clofilium produces sustained lowering of defibrillation energy requirements in a canine model.
    Dorian P; Wang M; David I; Feindel C
    Circulation; 1991 Feb; 83(2):614-21. PubMed ID: 1991379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta-adrenergic modulation of direct defibrillation energy in anesthetized dog heart.
    Ruffy R; Schechtman K; Monje E
    Am J Physiol; 1985 May; 248(5 Pt 2):H674-7. PubMed ID: 2986468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-dependent effects of lidocaine on defibrillation energy requirements in dogs.
    Echt DS; Cato EL; Coxe DR
    Circulation; 1989 Oct; 80(4):1003-9. PubMed ID: 2791234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The defibrillation threshold: a comparison of anesthetics and measurement methods.
    Gill RM; Sweeney RJ; Reid PR
    Pacing Clin Electrophysiol; 1993 Apr; 16(4 Pt 1):708-14. PubMed ID: 7683796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Canine cardiovascular responses to endotracheally and intravenously administered atropine, isoproterenol, and propranolol.
    Scott B; Martin FG; Matchett J; White S
    Ann Emerg Med; 1987 Jan; 16(1):1-10. PubMed ID: 3800058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of normothermic and hypothermic cardiopulmonary bypass on defibrillation energy requirements and transmyocardial impedance. Implications for implantable cardioverter-defibrillator implantation.
    Martin D; Garcia J; Valeri CR; Khuri SF
    J Thorac Cardiovasc Surg; 1995 May; 109(5):981-8. PubMed ID: 7739260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.