These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 1376878)

  • 1. ATP activates junctional and extrajunctional acetylcholine receptor channels in isolated adult rat muscle fibres.
    Mozrzymas JW; Ruzzier F
    Neurosci Lett; 1992 May; 139(2):217-20. PubMed ID: 1376878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of junctional and extrajunctional acetylcholine-receptor channels in organ cultured human muscle fibres.
    Cull-Candy SG; Miledi R; Uchitel OD
    J Physiol; 1982 Dec; 333():251-67. PubMed ID: 6304284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenosine 5'-triphosphate activates acetylcholine receptor channels in cultured Xenopus myotomal muscle cells.
    Igusa Y
    J Physiol; 1988 Nov; 405():169-85. PubMed ID: 2475606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interleukin-2 lengthens extrajunctional acetylcholine receptor channel open time in mammalian muscle cells.
    Lorenzon P; Ruzzier F; Caratsch CG; Giovannelli A; Velotti F; Santoni A; Eusebi F
    Pflugers Arch; 1991 Oct; 419(3-4):380-5. PubMed ID: 1720892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potentiation by ATP of the postsynaptic acetylcholine response at developing neuromuscular synapses in Xenopus cell cultures.
    Fu WM
    J Physiol; 1994 Jun; 477 ( Pt 3)(Pt 3):449-58. PubMed ID: 7523662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental change in the modulation of acetylcholine receptor channel by protein kinase C activation in Xenopus embryonic muscle cells.
    Fu WM; Lin JL
    Neurosci Lett; 1993 Dec; 164(1-2):97-100. PubMed ID: 7512251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine 5'-triphosphate increases acetylcholine channel opening frequency in rat skeletal muscle.
    Lu Z; Smith DO
    J Physiol; 1991 May; 436():45-56. PubMed ID: 2061841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of membrane channels induced by acetylcholine at frog muscle-tendon junctions.
    Miledi R; Reiser G; Uchitel OD
    J Physiol; 1984 May; 350():269-77. PubMed ID: 6086895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modes of hexamethonium action on acetylcholine receptor channels in frog skeletal muscle.
    Adams DJ; Bevan S; Terrar DA
    Br J Pharmacol; 1991 Jan; 102(1):135-45. PubMed ID: 1710523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meproadifen reaction with the ionic channel of the acetylcholine receptor: potentiation of agonist-induced desensitization at the frog neuromuscular junction.
    Maleque MA; Souccar C; Cohen JB; Albuquerque EX
    Mol Pharmacol; 1982 Nov; 22(3):636-47. PubMed ID: 6296656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise analysis of drug induced voltage clamp currents in denervated frog muscle fibres.
    Neher E; Sakmann B
    J Physiol; 1976 Jul; 258(3):705-29. PubMed ID: 1086359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosine triphosphate-evoked currents in cultured neurones dissociated from rat parasympathetic cardiac ganglia.
    Fieber LA; Adams DJ
    J Physiol; 1991 Mar; 434():239-56. PubMed ID: 1708820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of calcitonin gene-related peptide on synaptic acetylcholine receptor-channels in rat muscle fibres.
    Eusebi F; Farini D; Grassi F; Monaco L; Ruzzier F
    Proc R Soc Lond B Biol Sci; 1988 Aug; 234(1276):333-42. PubMed ID: 2464831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of bupivacaine with ionic channels of the nicotinic receptor. Analysis of single-channel currents.
    Aracava Y; Ikeda SR; Daly JW; Brookes N; Albuquerque EX
    Mol Pharmacol; 1984 Sep; 26(2):304-13. PubMed ID: 6090885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Appearance of new acetylcholine receptors on the baby chick biventer cervicis and denervated rat diaphragm muscles after blockade with alpha-bungarotoxin.
    Chiung Chang C; Jai Su M; Hsien Tung L
    J Physiol; 1977 Jun; 268(2):449-65. PubMed ID: 874917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of acetylcholine-activated channels of innervated and chronically denervated skeletal muscles.
    Allen CN; Albuquerque EX
    Exp Neurol; 1986 Mar; 91(3):532-45. PubMed ID: 2419153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetylcholine-induced ionic channels in rat skeletal muscle.
    Sakmann B
    Fed Proc; 1978 Oct; 37(12):2654-9. PubMed ID: 212327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of edrophonium, physostigmine and methanesulfonyl fluoride with the snake end-plate acetylcholine receptor-channel complex.
    Fiekers JF
    J Pharmacol Exp Ther; 1985 Sep; 234(3):539-49. PubMed ID: 2411911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylcholine receptors in normal and denervated rat diaphragm muscle. II. Comparison of junctional and extrajunctional receptors.
    Brockes JP; Hall ZW
    Biochemistry; 1975 May; 14(10):2100-6. PubMed ID: 1148161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination with high resistance micropipettes of acetylcholine sensitivity in frog slow muscle fibres.
    Lehouelleur J; Schmidt H
    J Physiol; 1981; 319():287-93. PubMed ID: 6976431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.