These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 1376982)
1. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Amann RI; Stromley J; Devereux R; Key R; Stahl DA Appl Environ Microbiol; 1992 Feb; 58(2):614-23. PubMed ID: 1376982 [TBL] [Abstract][Full Text] [Related]
2. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Ravenschlag K; Sahm K; Knoblauch C; Jørgensen BB; Amann R Appl Environ Microbiol; 2000 Aug; 66(8):3592-602. PubMed ID: 10919825 [TBL] [Abstract][Full Text] [Related]
3. Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Dar SA; Yao L; van Dongen U; Kuenen JG; Muyzer G Appl Environ Microbiol; 2007 Jan; 73(2):594-604. PubMed ID: 17098925 [TBL] [Abstract][Full Text] [Related]
4. Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Ito T; Okabe S; Satoh H; Watanabe Y Appl Environ Microbiol; 2002 Mar; 68(3):1392-402. PubMed ID: 11872492 [TBL] [Abstract][Full Text] [Related]
5. Seasonal changes in the relative abundance of uncultivated sulfate-reducing bacteria in a salt marsh sediment and in the rhizosphere of Spartina alterniflora. Rooney-Varga JN; Devereux R; Evans RS; Hines ME Appl Environ Microbiol; 1997 Oct; 63(10):3895-901. PubMed ID: 9327553 [TBL] [Abstract][Full Text] [Related]
6. Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Grigoryan AA; Cornish SL; Buziak B; Lin S; Cavallaro A; Arensdorf JJ; Voordouw G Appl Environ Microbiol; 2008 Jul; 74(14):4324-35. PubMed ID: 18502934 [TBL] [Abstract][Full Text] [Related]
7. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Loy A; Lehner A; Lee N; Adamczyk J; Meier H; Ernst J; Schleifer KH; Wagner M Appl Environ Microbiol; 2002 Oct; 68(10):5064-81. PubMed ID: 12324358 [TBL] [Abstract][Full Text] [Related]
8. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Teske A; Wawer C; Muyzer G; Ramsing NB Appl Environ Microbiol; 1996 Apr; 62(4):1405-15. PubMed ID: 8919802 [TBL] [Abstract][Full Text] [Related]
9. [Scanning for sulfate-degrading bacteria from a mat of hydrothermal field of Lost City by molecular cloning techniques ]. Gerasimchuk AL; Shatalov AA; Novikov AD; Butorova OP; Pimenov NV; Lein AIu; Ianenko AS; Karnachuk OV Mikrobiologiia; 2010; 79(1):103-13. PubMed ID: 20411667 [No Abstract] [Full Text] [Related]
10. Identification of population dynamics in sulfate-reducing consortia on exposure to sulfate. Icgen B; Harrison S Res Microbiol; 2006 Dec; 157(10):922-7. PubMed ID: 17008063 [TBL] [Abstract][Full Text] [Related]
11. Phosphate removal and sulfate reduction in a denitrification reactor packed with iron and wood as electron donors. Yamashita T; Yamamoto-Ikemoto R Water Sci Technol; 2008; 58(7):1405-13. PubMed ID: 18957753 [TBL] [Abstract][Full Text] [Related]
12. Successional development of sulfate-reducing bacterial populations and their activities in an activated sludge immobilized agar gel film. Okabe S; Santegoeds CM; Watanabe Y; de Beer D Biotechnol Bioeng; 2002 Apr; 78(2):119-30. PubMed ID: 11870602 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. So CM; Young LY Appl Environ Microbiol; 1999 Jul; 65(7):2969-76. PubMed ID: 10388691 [TBL] [Abstract][Full Text] [Related]
14. Phylogenetic identification and substrate uptake patterns of sulfate-reducing bacteria inhabiting an oxic-anoxic sewer biofilm determined by combining microautoradiography and fluorescent in situ hybridization. Ito T; Nielsen JL; Okabe S; Watanabe Y; Nielsen PH Appl Environ Microbiol; 2002 Jan; 68(1):356-64. PubMed ID: 11772645 [TBL] [Abstract][Full Text] [Related]
15. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Mussmann M; Ishii K; Rabus R; Amann R Environ Microbiol; 2005 Mar; 7(3):405-18. PubMed ID: 15683401 [TBL] [Abstract][Full Text] [Related]
17. A phylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment. Devereux R; Mundfrom GW Appl Environ Microbiol; 1994 Sep; 60(9):3437-9. PubMed ID: 7524446 [TBL] [Abstract][Full Text] [Related]
18. Improved 16S rRNA-targeted probe set for analysis of sulfate-reducing bacteria by fluorescence in situ hybridization. Lücker S; Steger D; Kjeldsen KU; MacGregor BJ; Wagner M; Loy A J Microbiol Methods; 2007 Jun; 69(3):523-8. PubMed ID: 17408790 [TBL] [Abstract][Full Text] [Related]
19. Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Harmsen HJ; Wullings B; Akkermans AD; Ludwig W; Stams AJ Arch Microbiol; 1993; 160(3):238-40. PubMed ID: 7692834 [TBL] [Abstract][Full Text] [Related]