These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 1376982)
61. Quantification of Gram-negative sulphate-reducing bacteria in rice field soil by 16S rRNA gene-targeted real-time PCR. Stubner S J Microbiol Methods; 2004 May; 57(2):219-30. PubMed ID: 15063062 [TBL] [Abstract][Full Text] [Related]
62. Desulfovibrio carbinoliphilus sp. nov., a benzyl alcohol-oxidizing, sulfate-reducing bacterium isolated from a gas condensate-contaminated aquifer. Allen TD; Kraus PF; Lawson PA; Drake GR; Balkwill DL; Tanner RS Int J Syst Evol Microbiol; 2008 Jun; 58(Pt 6):1313-7. PubMed ID: 18523171 [TBL] [Abstract][Full Text] [Related]
63. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [TBL] [Abstract][Full Text] [Related]
64. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Schmid M; Twachtmann U; Klein M; Strous M; Juretschko S; Jetten M; Metzger JW; Schleifer KH; Wagner M Syst Appl Microbiol; 2000 Apr; 23(1):93-106. PubMed ID: 10879983 [TBL] [Abstract][Full Text] [Related]
65. Desulfotomaculum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring. Haouari O; Fardeau ML; Cayol JL; Casiot C; Elbaz-Poulichet F; Hamdi M; Joseph M; Ollivier B Int J Syst Evol Microbiol; 2008 Nov; 58(Pt 11):2529-35. PubMed ID: 18984688 [TBL] [Abstract][Full Text] [Related]
66. Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment. Jagersma GC; Meulepas RJ; Heikamp-de Jong I; Gieteling J; Klimiuk A; Schouten S; Damsté JS; Lens PN; Stams AJ Environ Microbiol; 2009 Dec; 11(12):3223-32. PubMed ID: 19703218 [TBL] [Abstract][Full Text] [Related]
69. Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine Arctic sediments. Sahm K; Knoblauch C; Amann R Appl Environ Microbiol; 1999 Sep; 65(9):3976-81. PubMed ID: 10473404 [TBL] [Abstract][Full Text] [Related]
70. Detection of abundant sulphate-reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. Wieringa EB; Overmann J; Cypionka H Environ Microbiol; 2000 Aug; 2(4):417-27. PubMed ID: 11234930 [TBL] [Abstract][Full Text] [Related]
71. Desulfohalobium utahense sp. nov., a moderately halophilic, sulfate-reducing bacterium isolated from Great Salt Lake. Jakobsen TF; Kjeldsen KU; Ingvorsen K Int J Syst Evol Microbiol; 2006 Sep; 56(Pt 9):2063-2069. PubMed ID: 16957100 [TBL] [Abstract][Full Text] [Related]
72. [Taxonomic position of certain representatives of sulphate-reducing corrosive microbial community]. Asaulenko LH; Abdulina DR; Purish LM Mikrobiol Z; 2010; 72(4):3-10. PubMed ID: 20812503 [TBL] [Abstract][Full Text] [Related]
73. Characterization of the diversity of sulfate-reducing bacteria in soil and mining waste water environments by nucleic acid hybridization techniques. Telang AJ; Voordouw G; Ebert S; Sifeldeen N; Foght JM; Fedorak PM; Westlake DW Can J Microbiol; 1994 Nov; 40(11):955-64. PubMed ID: 7804906 [TBL] [Abstract][Full Text] [Related]
74. Characterization of microbial communities in anaerobic bioreactors using molecular probes. Raskin L; Zheng D; Griffin ME; Stroot PG; Misra P Antonie Van Leeuwenhoek; 1995 Nov; 68(4):297-308. PubMed ID: 8821785 [TBL] [Abstract][Full Text] [Related]
75. Influence of sulfate-reducing bacteria on outdoor hydrogen production by photosynthetic bacterium with seawater. Maeda I; Mizoguchi T; Miura Y; Yagi K; Shioji N; Miyasaka H Curr Microbiol; 2000 Mar; 40(3):210-3. PubMed ID: 10679056 [TBL] [Abstract][Full Text] [Related]
76. A highly selective direct method of detecting sulphate-reducing bacteria in crude oil. Tanaka Y; Sogabe M; Okumura K; Kurane R Lett Appl Microbiol; 2002; 35(3):242-6. PubMed ID: 12180949 [TBL] [Abstract][Full Text] [Related]
77. Sulfate Reduction and Inorganic Carbon Assimilation in Acidic Thermal Springs of the Kamchatka Peninsula. Mikrobiologiia; 2016 Jul; 85(4):446-457. PubMed ID: 28853776 [TBL] [Abstract][Full Text] [Related]
78. Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments, Southern China. Jiang L; Zheng Y; Peng X; Zhou H; Zhang C; Xiao X; Wang F FEMS Microbiol Ecol; 2009 Nov; 70(2):93-106. PubMed ID: 19744241 [TBL] [Abstract][Full Text] [Related]
79. Whole-cell versus total RNA extraction for analysis of microbial community structure with 16S rRNA-targeted oligonucleotide probes in salt marsh sediments. Frischer ME; Danforth JM; Newton Healy MA; Saunders FM Appl Environ Microbiol; 2000 Jul; 66(7):3037-43. PubMed ID: 10877803 [TBL] [Abstract][Full Text] [Related]
80. Clostridium sulfidigenes sp. nov., a mesophilic, proteolytic, thiosulfate- and sulfur-reducing bacterium isolated from pond sediment. Sallam A; Steinbüchel A Int J Syst Evol Microbiol; 2009 Jul; 59(Pt 7):1661-5. PubMed ID: 19542123 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]