These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 1377034)

  • 1. Surface-reactive biomaterials in osteoblast cultures: an ultrastructural study.
    Sautier JM; Nefussi JR; Forest N
    Biomaterials; 1992; 13(6):400-2. PubMed ID: 1377034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructure of the interface between cultured osteoblasts and surface-modified polymer substrates.
    Yamamoto M; Kato K; Ikada Y
    J Biomed Mater Res; 1997 Oct; 37(1):29-36. PubMed ID: 9335346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro induction of a calcifying matrix by biomaterials constituted of collagen and/or hydroxyapatite: an ultrastructural comparison of three types of biomaterials.
    Serre CM; Papillard M; Chavassieux P; Boivin G
    Biomaterials; 1993; 14(2):97-106. PubMed ID: 8382091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural in vitro characterization of a porous hydroxyapatite/bone cell interface.
    Holden CM; Bernard GW
    J Oral Implantol; 1990; 16(2):86-95. PubMed ID: 1963643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary studies on the phenomenological behaviour of osteoblasts cultured on hydroxyapatite ceramics.
    Bagambisa FB; Joos U
    Biomaterials; 1990 Jan; 11(1):50-6. PubMed ID: 2154267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Type I collagen in xenogenic bone material regulates attachment and spreading of osteoblasts over the beta1 integrin subunit].
    Baslé MF; Lesourd M; Grizon F; Pascaretti C; Chappard D
    Orthopade; 1998 Feb; 27(2):136-42. PubMed ID: 9530670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mineralization and bone formation on microcarrier beads with isolated rat calvaria cell population.
    Sautier JM; Nefussi JR; Forest N
    Calcif Tissue Int; 1992 Jun; 50(6):527-32. PubMed ID: 1381988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing HAPEX topography influences osteoblast response.
    Dalby MJ; Di Silvio L; Gurav N; Annaz B; Kayser MV; Bonfield W
    Tissue Eng; 2002 Jul; 8(3):453-67. PubMed ID: 12167231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ultrastructure of the bone-hydroxyapatite interface in vitro.
    de Bruijn JD; Klein CP; de Groot K; van Blitterswijk CA
    J Biomed Mater Res; 1992 Oct; 26(10):1365-82. PubMed ID: 1331114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material.
    Elgendy HM; Norman ME; Keaton AR; Laurencin CT
    Biomaterials; 1993; 14(4):263-9. PubMed ID: 8386557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural findings on the interface between hydroxylapatite and oral tissues.
    Passi P; Terribile Wiel Marin V; Parenti A; Miotti A
    Quintessence Int; 1991 Mar; 22(3):193-7. PubMed ID: 1648751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro interaction between primary bone organ cultures, glass-ionomer cements and hydroxyapatite/tricalcium phosphate ceramics.
    Brook IM; Craig GT; Lamb DJ
    Biomaterials; 1991 Mar; 12(2):179-86. PubMed ID: 1652294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoblasts on hydroxyapatite, alumina and bone surfaces in vitro: morphology during the first 2 h of attachment.
    Malik MA; Puleo DA; Bizios R; Doremus RH
    Biomaterials; 1992; 13(2):123-8. PubMed ID: 1550897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetron co-sputtered silicon-containing hydroxyapatite thin films--an in vitro study.
    Thian ES; Huang J; Best SM; Barber ZH; Bonfield W
    Biomaterials; 2005 Jun; 26(16):2947-56. PubMed ID: 15603789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano hydroxyapatite-blasted titanium surface affects pre-osteoblast morphology by modulating critical intracellular pathways.
    Bezerra F; Ferreira MR; Fontes GN; da Costa Fernandes CJ; Andia DC; Cruz NC; da Silva RA; Zambuzzi WF
    Biotechnol Bioeng; 2017 Aug; 114(8):1888-1898. PubMed ID: 28401535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative in vitro study of the proliferation and growth of human osteoblast-like cells on various biomaterials.
    Itthichaisri C; Wiedmann-Al-Ahmad M; Huebner U; Al-Ahmad A; Schoen R; Schmelzeisen R; Gellrich NC
    J Biomed Mater Res A; 2007 Sep; 82(4):777-87. PubMed ID: 17326141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro growth and differentiation of osteoblast-like cells on hydroxyapatite ceramic granule calcified from red algae.
    Turhani D; Cvikl B; Watzinger E; Weissenböck M; Yerit K; Thurnher D; Lauer G; Ewers R
    J Oral Maxillofac Surg; 2005 Jun; 63(6):793-9. PubMed ID: 15944976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different substitute biomaterials as potential scaffolds in tissue engineering.
    Petrovic L; Schlegel AK; Schultze-Mosgau S; Wiltfang J
    Int J Oral Maxillofac Implants; 2006; 21(2):225-31. PubMed ID: 16634492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructure of durapatite-periodontal tissue interface in human intrabony defects.
    Ganeles J; Listgarten MA; Evian CI
    J Periodontol; 1986 Mar; 57(3):133-40. PubMed ID: 3007724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface physics methods and in vitro bone-biomaterial interface control.
    Muster D; Humbert P; Mosser A
    Biomaterials; 1990 Jul; 11():57-62. PubMed ID: 2168765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.