These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 1377094)
1. Transposon Tn5-259 mutagenesis of Pseudomonas cepacia to isolate mutants deficient in antifungal activity. Jayaswal RK; Fernandez MA; Visintin L; Upadhyay RS Can J Microbiol; 1992 Apr; 38(4):309-12. PubMed ID: 1377094 [TBL] [Abstract][Full Text] [Related]
2. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Hammer PE; Hill DS; Lam ST; Van Pée KH; Ligon JM Appl Environ Microbiol; 1997 Jun; 63(6):2147-54. PubMed ID: 9172332 [TBL] [Abstract][Full Text] [Related]
3. A genetic analysis system of Burkholderia cepacia: construction of mobilizable transposons and a cloning vector. Abe M; Tsuda M; Kimoto M; Inouye S; Nakazawa A; Nakazawa T Gene; 1996 Oct; 174(2):191-4. PubMed ID: 8890733 [TBL] [Abstract][Full Text] [Related]
4. Construction of a recA mutant of Burkholderia (formerly Pseudomonas), cepacia. van Waasbergen LG; Kidambi SP; Miller RV Appl Microbiol Biotechnol; 1998 Jan; 49(1):59-65. PubMed ID: 9487711 [TBL] [Abstract][Full Text] [Related]
5. Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Kang Y; Carlson R; Tharpe W; Schell MA Appl Environ Microbiol; 1998 Oct; 64(10):3939-47. PubMed ID: 9758823 [TBL] [Abstract][Full Text] [Related]
6. Conservation of the pyrrolnitrin biosynthetic gene cluster among six pyrrolnitrin-producing strains. Hammer PE; Burd W; Hill DS; Ligon JM; van Pée K FEMS Microbiol Lett; 1999 Nov; 180(1):39-44. PubMed ID: 10547442 [TBL] [Abstract][Full Text] [Related]
7. Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia: characterization of pvdA, the gene encoding L-ornithine N(5)-oxygenase. Sokol PA; Darling P; Woods DE; Mahenthiralingam E; Kooi C Infect Immun; 1999 Sep; 67(9):4443-55. PubMed ID: 10456885 [TBL] [Abstract][Full Text] [Related]
8. Localization of transposon insertions in pathogenicity mutants of Erwinia amylovora and their biochemical characterization. Bellemann P; Geider K J Gen Microbiol; 1992 May; 138(5):931-40. PubMed ID: 1322951 [TBL] [Abstract][Full Text] [Related]
9. Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Vincent MN; Harrison LA; Brackin JM; Kovacevich PA; Mukerji P; Weller DM; Pierson EA Appl Environ Microbiol; 1991 Oct; 57(10):2928-34. PubMed ID: 1660695 [TBL] [Abstract][Full Text] [Related]
10. Clustering of the trp genes in Burkholderia (formerly Pseudomonas) cepacia. Matsumoto H; Furihata K; Ohnishi M; Holloway BW FEMS Microbiol Lett; 1995 Dec; 134(2-3):265-71. PubMed ID: 8586278 [TBL] [Abstract][Full Text] [Related]
11. Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Zhao K; Penttinen P; Zhang X; Ao X; Liu M; Yu X; Chen Q Microbiol Res; 2014 Jan; 169(1):76-82. PubMed ID: 23932330 [TBL] [Abstract][Full Text] [Related]
12. Genomic complexity and plasticity of Burkholderia cepacia. Lessie TG; Hendrickson W; Manning BD; Devereux R FEMS Microbiol Lett; 1996 Nov; 144(2-3):117-28. PubMed ID: 8900054 [TBL] [Abstract][Full Text] [Related]
13. Transposon Tn5 mutagenesis of pseudomonas fluorescens to isolate mutants deficient in antibacterial activity. Rajendran N; Jahn D; Jayaraman K; Marahiel MA FEMS Microbiol Lett; 1994 Jan; 115(2-3):191-6. PubMed ID: 8138133 [TBL] [Abstract][Full Text] [Related]
14. A novel plasmid pIJB1 possessing a putative 2,4-dichlorophenoxyacetate degradative transposon Tn5530 in Burkholderia cepacia strain 2a. Xia XS; Aathithan S; Oswiecimska K; Smith AR; Bruce IJ Plasmid; 1998; 39(2):154-9. PubMed ID: 9514710 [TBL] [Abstract][Full Text] [Related]
15. Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84. Pierson LS; Thomashow LS Mol Plant Microbe Interact; 1992; 5(4):330-9. PubMed ID: 1325219 [TBL] [Abstract][Full Text] [Related]
16. Mobilization, cloning, and sequence determination of a plasmid-encoded polygalacturonase from a phytopathogenic Burkholderia (Pseudomonas) cepacia. Gonzalez CF; Pettit EA; Valadez VA; Provin EM Mol Plant Microbe Interact; 1997 Sep; 10(7):840-51. PubMed ID: 9304858 [TBL] [Abstract][Full Text] [Related]
17. Construction of a β-galactosidase-gene-based fusion is convenient for screening candidate genes involved in regulation of pyrrolnitrin biosynthesis in Pseudomonas chlororaphis G05. Luo W; Miao J; Feng Z; Lu R; Sun X; Zhang B; Ding W; Lu Y; Wang Y; Chi X; Ge Y J Gen Appl Microbiol; 2019 Jan; 64(6):259-268. PubMed ID: 29806629 [TBL] [Abstract][Full Text] [Related]
18. Molecular cloning of genes that specify virulence in Pseudomonas solanacearum. Xu PL; Leong S; Sequeira L J Bacteriol; 1988 Feb; 170(2):617-22. PubMed ID: 2828316 [TBL] [Abstract][Full Text] [Related]
19. Transposon insertion mutagenesis of Pseudomonas aeruginosa with a Tn5 derivative: application to physical mapping of the arc gene cluster. Rella M; Mercenier A; Haas D Gene; 1985; 33(3):293-303. PubMed ID: 2989092 [TBL] [Abstract][Full Text] [Related]
20. Cloning of a phenazine biosynthetic locus of Pseudomonas aureofaciens PGS12 and analysis of its expression in vitro with the ice nucleation reporter gene. Georgakopoulos DG; Hendson M; Panopoulos NJ; Schroth MN Appl Environ Microbiol; 1994 Aug; 60(8):2931-8. PubMed ID: 8085830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]