These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 137711)

  • 1. [The change of physical properties of plastics (polyoxymethylenecopolymer, polyethyleneterephthalate, polyethylene, polytetrafluorethylene) after animal implantation and autoclavation (author's transl)].
    Wolter D; Burri C; Kinzl L; Müller A
    Arch Orthop Unfallchir; 1976 Nov; 86(3):291-302. PubMed ID: 137711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Bio-compatibility of different plastics (polyoxymethylene-copolymer, polyethylensterephthalate, polyethylene, polytetrafluorethylene) (author's transl)].
    Kinzl L; Burri C; Mohr W; Paulini K; Wolter D
    Z Orthop Ihre Grenzgeb; 1976 Oct; 114(5):777-84. PubMed ID: 136831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implant stabilization. Chemical and biomechanical considerations.
    Homsy CA
    Orthop Clin North Am; 1973 Apr; 4(2):295-311. PubMed ID: 4267619
    [No Abstract]   [Full Text] [Related]  

  • 4. [Studies on compatibility between plastics and blood (author's transl)].
    Götz H
    Langenbecks Arch Chir; 1974 May; 335(1):95-126. PubMed ID: 4275926
    [No Abstract]   [Full Text] [Related]  

  • 5. [Alloplastic ligament replacement. A study of the biological fixation of 5 non-resorbable materials].
    Weckbach A; Kunz E; Kirchner T
    Unfallchirurg; 1990 Aug; 93(8):380-3. PubMed ID: 2144058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable elastomeric biomaterials--polyethylene oxide/polyethylene terephthalate copolymers.
    Reed AM; Gilding DK; Wilson J
    Trans Am Soc Artif Intern Organs; 1977; 23():109-15. PubMed ID: 20685
    [No Abstract]   [Full Text] [Related]  

  • 7. Bio-materials science and technology.
    Hastings GW
    Biomater Med Devices Artif Organs; 1979; 7(1):1-22. PubMed ID: 156565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular proliferation and macrophage populations associated with implanted expanded polytetrafluoroethylene and polyethyleneterephthalate.
    Hagerty RD; Salzmann DL; Kleinert LB; Williams SK
    J Biomed Mater Res; 2000 Mar; 49(4):489-97. PubMed ID: 10602082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of polyethylene terephthalate and expanded-polytetrafluoroethylene in medialization laryngoplasty.
    Keskin G; Boyaci Z; Ustundag E; Kaur A; Almaç A
    J Laryngol Otol; 2003 Apr; 117(4):294-7. PubMed ID: 12816219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility of a polyether urethane, polypropylene oxide, and a polyether polyester copolymer. A qualitative and quantitative study of three alloplastic tympanic membrane materials in the rat middle ear.
    Bakker D; van Blitterswijk CA; Hesseling SC; Koerten HK; Kuijpers W; Grote JJ
    J Biomed Mater Res; 1990 Apr; 24(4):489-515. PubMed ID: 2347874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alloplastic implants 1972.
    Dickinson JT; Jaquiss GW
    Otolaryngol Clin North Am; 1972 Oct; 5(3):481-500. PubMed ID: 4262852
    [No Abstract]   [Full Text] [Related]  

  • 12. [Biocompatibility of wood in bone tissue (author's transl)].
    Kristen H; Bösch P; Bednar H; Plenk H
    Arch Orthop Unfallchir; 1977 Jul; 89(1):1-14. PubMed ID: 329818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A preliminary in vivo assessment of acrylic acid graft-copolymers in the urinary tract.
    Ford TF; Parkinson MC; Fydelor PJ; Ringrose BJ; Wickham JE
    J Urol; 1985 Jan; 133(1):141-3. PubMed ID: 3964873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials.
    Dai Z; Li Y; Lu W; Jiang D; Li H; Yan Y; Lv G; Yang A
    Int J Nanomedicine; 2015; 10():6303-16. PubMed ID: 26504382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preliminary characterization of bioresorbable and nonresorbable synthetic fibers for the repair of soft tissue injuries.
    Shieh SJ; Zimmerman MC; Parsons JR
    J Biomed Mater Res; 1990 Jul; 24(7):789-808. PubMed ID: 2398072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous high-density polyethylene implants in auricular reconstruction.
    Williams JD; Romo T; Sclafani AP; Cho H
    Arch Otolaryngol Head Neck Surg; 1997 Jun; 123(6):578-83. PubMed ID: 9193216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue reaction to three ceramics of porous and non-porous structures.
    Hulbert SF; Morrison SJ; Klawitter JJ
    J Biomed Mater Res; 1972 Sep; 6(5):347-74. PubMed ID: 4116127
    [No Abstract]   [Full Text] [Related]  

  • 18. The histological effects of the implantation of different sizes of polyethylene particles in the rabbit tibia.
    Goodman SB; Fornasier VL; Lee J; Kei J
    J Biomed Mater Res; 1990 Apr; 24(4):517-24. PubMed ID: 2189880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Tissue compatibility of polyethylene, polyester and polyacetal-resin polymers].
    Kinzl L; Wolter D; Burri C
    Helv Chir Acta; 1976 Dec; 43(5-6):775-7. PubMed ID: 794037
    [No Abstract]   [Full Text] [Related]  

  • 20. Calcium phosphate formation on plasma immersion ion implanted low density polyethylene and polytetrafluorethylene surfaces.
    Kondyurin A; Pecheva E; Pramatarova L
    J Mater Sci Mater Med; 2008 Mar; 19(3):1145-53. PubMed ID: 17701291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.