These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1377140)

  • 1. ATP-dependent bacterial transporters and cystic fibrosis: analogy between channels and transporters.
    Ames GF; Lecar H
    FASEB J; 1992 Jun; 6(9):2660-6. PubMed ID: 1377140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance.
    Doige CA; Ames GF
    Annu Rev Microbiol; 1993; 47():291-319. PubMed ID: 7504904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secretion of peptides and proteins lacking hydrophobic signal sequences: the role of adenosine triphosphate-driven membrane translocators.
    Kuchler K; Thorner J
    Endocr Rev; 1992 Aug; 13(3):499-514. PubMed ID: 1425485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases.
    Ames GF; Mimura CS; Shyamala V
    FEMS Microbiol Rev; 1990 Aug; 6(4):429-46. PubMed ID: 2147378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrodiffusional ATP movement through CFTR and other ABC transporters.
    Cantiello HF
    Pflugers Arch; 2001; 443 Suppl 1():S22-7. PubMed ID: 11845298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport.
    Hyde SC; Emsley P; Hartshorn MJ; Mimmack MM; Gileadi U; Pearce SR; Gallagher MP; Gill DR; Hubbard RE; Higgins CF
    Nature; 1990 Jul; 346(6282):362-5. PubMed ID: 1973824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ABC transporters: from microorganisms to man.
    Higgins CF
    Annu Rev Cell Biol; 1992; 8():67-113. PubMed ID: 1282354
    [No Abstract]   [Full Text] [Related]  

  • 8. The cystic fibrosis transmembrane regulator forms macromolecular complexes with PDZ domain scaffold proteins.
    Guggino WB
    Proc Am Thorac Soc; 2004; 1(1):28-32. PubMed ID: 16113408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cl- absorption across the thick ascending limb is not altered in cystic fibrosis mice. A role for a pseudo-CFTR Cl- channel.
    Marvão P; De Jesus Ferreira MC; Bailly C; Paulais M; Bens M; Guinamard R; Moreau R; Vandewalle A; Teulon J
    J Clin Invest; 1998 Dec; 102(11):1986-93. PubMed ID: 9835624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ATP-binding component of a prokaryotic traffic ATPase is exposed to the periplasmic (external) surface.
    Baichwal V; Liu D; Ames GF
    Proc Natl Acad Sci U S A; 1993 Jan; 90(2):620-4. PubMed ID: 7678461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into cystic fibrosis: molecular switches that regulate CFTR.
    Guggino WB; Stanton BA
    Nat Rev Mol Cell Biol; 2006 Jun; 7(6):426-36. PubMed ID: 16723978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function analysis of the histidine permease and comparison with cystic fibrosis mutations.
    Shyamala V; Baichwal V; Beall E; Ames GF
    J Biol Chem; 1991 Oct; 266(28):18714-9. PubMed ID: 1717452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel.
    Berger HA; Anderson MP; Gregory RJ; Thompson S; Howard PW; Maurer RA; Mulligan R; Smith AE; Welsh MJ
    J Clin Invest; 1991 Oct; 88(4):1422-31. PubMed ID: 1717515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents.
    Sheppard DN; Welsh MJ
    J Gen Physiol; 1992 Oct; 100(4):573-91. PubMed ID: 1281220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CFTR is a conductance regulator as well as a chloride channel.
    Schwiebert EM; Benos DJ; Egan ME; Stutts MJ; Guggino WB
    Physiol Rev; 1999 Jan; 79(1 Suppl):S145-66. PubMed ID: 9922379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial periplasmic permeases as model systems for the superfamily of traffic ATPases, including the multidrug resistance protein and the cystic fibrosis transmembrane conductance regulator.
    Ames GF
    Int Rev Cytol; 1992; 137():1-35. PubMed ID: 1385348
    [No Abstract]   [Full Text] [Related]  

  • 17. Rab GTPases regulate the trafficking of channels and transporters - a focus on cystic fibrosis.
    Farinha CM; Matos P
    Small GTPases; 2018 Mar; 9(1-2):136-144. PubMed ID: 28463591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP alters current fluctuations of cystic fibrosis transmembrane conductance regulator: evidence for a three-state activation mechanism.
    Venglarik CJ; Schultz BD; Frizzell RA; Bridges RJ
    J Gen Physiol; 1994 Jul; 104(1):123-46. PubMed ID: 7525859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CFTR, a channel with the structure of a transporter.
    Riordan JR; Chang XB
    Biochim Biophys Acta; 1992 Jul; 1101(2):221-2. PubMed ID: 1378761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic anion channel activity of the recombinant first nucleotide binding fold domain of the cystic fibrosis transmembrane regulator protein.
    Arispe N; Rojas E; Hartman J; Sorscher EJ; Pollard HB
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1539-43. PubMed ID: 1371876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.