BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 1377279)

  • 1. Promoter sequence containing (CT)n.(GA)n repeats is critical for the formation of the DNase I hypersensitive sites in the Drosophila hsp26 gene.
    Lu Q; Wallrath LL; Allan BD; Glaser RL; Lis JT; Elgin SC
    J Mol Biol; 1992 Jun; 225(4):985-98. PubMed ID: 1377279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene.
    Lu Q; Wallrath LL; Granok H; Elgin SC
    Mol Cell Biol; 1993 May; 13(5):2802-14. PubMed ID: 8474442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of a positioned nucleosome at the Drosophila melanogaster hsp26 promoter.
    Lu Q; Wallrath LL; Elgin SC
    EMBO J; 1995 Oct; 14(19):4738-46. PubMed ID: 7588603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GAGA factor and the TFIID complex collaborate in generating an open chromatin structure at the Drosophila melanogaster hsp26 promoter.
    Leibovitch BA; Lu Q; Benjamin LR; Liu Y; Gilmour DS; Elgin SC
    Mol Cell Biol; 2002 Sep; 22(17):6148-57. PubMed ID: 12167709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution mapping of DNase I-hypersensitive sites of Drosophila heat shock genes in Drosophila melanogaster and Saccharomyces cerevisiae.
    Costlow N; Lis JT
    Mol Cell Biol; 1984 Sep; 4(9):1853-63. PubMed ID: 6436689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insensitivity of the present hsp26 chromatin structure to a TATA box mutation in Drosophila.
    Lu Q; Wallrath LL; Emanuel PA; Elgin SC; Gilmour DS
    J Biol Chem; 1994 Jun; 269(22):15906-11. PubMed ID: 8195245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of histone acetylation modification in basal and inducible expression of hsp26 gene in D. melanogaster.
    Zhao Y; Lu J; Sun H; Chen X; Huang B
    Mol Cell Biochem; 2007 Dec; 306(1-2):1-8. PubMed ID: 17619947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein/DNA architecture of the DNase I hypersensitive region of the Drosophila hsp26 promoter.
    Thomas GH; Elgin SC
    EMBO J; 1988 Jul; 7(7):2191-201. PubMed ID: 2901349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal heat-induced expression of the Drosophila hsp26 gene requires a promoter sequence containing (CT)n.(GA)n repeats.
    Glaser RL; Thomas GH; Siegfried E; Elgin SC; Lis JT
    J Mol Biol; 1990 Feb; 211(4):751-61. PubMed ID: 2313697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architectural variations of inducible eukaryotic promoters: preset and remodeling chromatin structures.
    Wallrath LL; Lu Q; Granok H; Elgin SC
    Bioessays; 1994 Mar; 16(3):165-70. PubMed ID: 8166669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple, compensatory regulatory elements specify spermatocyte-specific expression of the Drosophila melanogaster hsp26 gene.
    Glaser RL; Lis JT
    Mol Cell Biol; 1990 Jan; 10(1):131-7. PubMed ID: 2104657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncoupling gene activity from chromatin structure: promoter mutations can inactivate transcription of the yeast HSP82 gene without eliminating nucleosome-free regions.
    Lee MS; Garrard WT
    Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9166-70. PubMed ID: 1409619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional dissection of two promoters that control sense and antisense transcription of Drosophila melanogaster F elements.
    Contursi C; Minchiotti G; Di Nocera PP
    J Mol Biol; 1993 Dec; 234(4):988-97. PubMed ID: 8263945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene.
    Gross DS; Adams CC; Lee S; Stentz B
    EMBO J; 1993 Oct; 12(10):3931-45. PubMed ID: 8404861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple protein-DNA interactions over the yeast HSC82 heat shock gene promoter.
    Erkine AM; Adams CC; Gao M; Gross DS
    Nucleic Acids Res; 1995 May; 23(10):1822-9. PubMed ID: 7784189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The capacity to form H-DNA cannot substitute for GAGA factor binding to a (CT)n*(GA)n regulatory site.
    Lu Q; Teare JM; Granok H; Swede MJ; Xu J; Elgin SC
    Nucleic Acids Res; 2003 May; 31(10):2483-94. PubMed ID: 12736297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of a DNase I-hypersensitive site in transgenic Drosophila reveals a key regulatory element of Sgs3.
    Ramain P; Giangrande A; Richards G; Bellard M
    Proc Natl Acad Sci U S A; 1988 Apr; 85(8):2718-22. PubMed ID: 3128796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin remodeling by GAGA factor and heat shock factor at the hypersensitive Drosophila hsp26 promoter in vitro.
    Wall G; Varga-Weisz PD; Sandaltzopoulos R; Becker PB
    EMBO J; 1995 Apr; 14(8):1727-36. PubMed ID: 7737124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cis-Acting elements and transcription factors involved in the intestinal specific expression of the rat calbindin-D9K gene: binding of the intestine-specific transcription factor Cdx-2 to the TATA box.
    Lambert M; Colnot S; Suh E; L'Horset F; Blin C; Calliot ME; Raymondjean M; Thomasset M; Traber PG; Perret C
    Eur J Biochem; 1996 Mar; 236(3):778-88. PubMed ID: 8665895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular architecture of the hsp70 promoter after deletion of the TATA box or the upstream regulation region.
    Weber JA; Taxman DJ; Lu Q; Gilmour DS
    Mol Cell Biol; 1997 Jul; 17(7):3799-808. PubMed ID: 9199313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.