These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1378412)

  • 21. Identification and expression of XRTN1-A and XRTN1-C in Xenopus laevis.
    Park EC; Shim S; Han JK
    Dev Dyn; 2007 Dec; 236(12):3545-53. PubMed ID: 17969151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway.
    Takahashi C; Suzuki T; Nishida E; Kusakabe M
    Int J Dev Biol; 2012; 56(5):393-402. PubMed ID: 22811273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning and developmental characterization of Xenopus laevis membrane type-3 matrix metalloproteinase (MT3-MMP).
    Hammoud L; Walsh LA; Damjanovski S
    Biochem Cell Biol; 2006 Apr; 84(2):167-77. PubMed ID: 16609697
    [TBL] [Abstract][Full Text] [Related]  

  • 24. XLS13A and XLS13B: SRY-related genes of Xenopus laevis.
    Hiraoka Y; Komatsu N; Sakai Y; Ogawa M; Shiozawa M; Aiso S
    Gene; 1997 Sep; 197(1-2):65-71. PubMed ID: 9332350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two divergent cellular src genes are expressed in Xenopus laevis.
    Steele RE
    Nucleic Acids Res; 1985 Mar; 13(5):1747-61. PubMed ID: 2987836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of two nonallelic type II procollagen genes during Xenopus laevis embryogenesis is characterized by stage-specific production of alternatively spliced transcripts.
    Su MW; Suzuki HR; Bieker JJ; Solursh M; Ramirez F
    J Cell Biol; 1991 Oct; 115(2):565-75. PubMed ID: 1918153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuron-specific splicing of C-SRC RNA in human brain.
    Pyper JM; Bolen JB
    J Neurosci Res; 1989 Sep; 24(1):89-96. PubMed ID: 2681803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Xenopus laevis Stromal cell-derived factor 1: conservation of structure and function during vertebrate development.
    Braun M; Wunderlin M; Spieth K; Knöchel W; Gierschik P; Moepps B
    J Immunol; 2002 Mar; 168(5):2340-7. PubMed ID: 11859124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complementary DNA analysis, expression and subcellular localization of hnRNP E2 gene in Xenopus laevis.
    Gravina P; Campioni N; Loreni F; Pierandrei-Amaldi P; Cardinali B
    Gene; 2002 May; 290(1-2):193-201. PubMed ID: 12062814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and expression of myelin basic protein gene products in Xenopus laevis.
    Nanba R; Fujita N; Nagata S
    Gene; 2010 Jul; 459(1-2):32-8. PubMed ID: 20353813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The PR55 and PR65 subunits of protein phosphatase 2A from Xenopus laevis. molecular cloning and developmental regulation of expression.
    Bosch M; Cayla X; Van Hoof C; Hemmings BA; Ozon R; Merlevede W; Goris J
    Eur J Biochem; 1995 Jun; 230(3):1037-45. PubMed ID: 7601134
    [TBL] [Abstract][Full Text] [Related]  

  • 32. cDNA cloning and developmental expression of cellular nucleic acid-binding protein (CNBP) gene in Xenopus laevis.
    De Dominicis A; Lotti F; Pierandrei-Amaldi P; Cardinali B
    Gene; 2000 Jan; 241(1):35-43. PubMed ID: 10607896
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and developmental expression of Xenopus hmga2beta.
    Benini F; Onorati M; Altamura S; Manfioletti G; Vignali R
    Biochem Biophys Res Commun; 2006 Dec; 351(2):392-7. PubMed ID: 17070502
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cardiac myosin heavy chain expression during heart development in Xenopus laevis.
    Cox WG; Neff AW
    Differentiation; 1995 Apr; 58(4):269-80. PubMed ID: 7641978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple noggins in vertebrate genome: cloning and expression of noggin2 and noggin4 in Xenopus laevis.
    Eroshkin FM; Ermakova GV; Bayramov AV; Zaraisky AG
    Gene Expr Patterns; 2006 Jan; 6(2):180-6. PubMed ID: 16168719
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome.
    Devotta A; Juraver-Geslin H; Gonzalez JA; Hong CS; Saint-Jeannet JP
    Dev Biol; 2016 Jul; 415(2):371-382. PubMed ID: 26874011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of the Xenopus D2 dopamine receptor. Tissue-specific regulation and two transcriptionally active genes but no evidence for alternative splicing.
    Martens GJ; Groenen PM; Gröneveld D; Van Riel MC
    Eur J Biochem; 1993 May; 213(3):1349-54. PubMed ID: 8504826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of c-myc proto-oncogene during the early development of Xenopus laevis.
    Nishikura K
    Oncogene Res; 1987 Jul; 1(2):179-91. PubMed ID: 2835732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developmentally regulated alternative splicing in the Xenopus laevis c-Myc gene creates an intron-1 containing c-Myc RNA present only in post-midblastula embryos.
    King MW
    Nucleic Acids Res; 1991 Oct; 19(20):5777-83. PubMed ID: 1945855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrin expression in early amphibian embryos: cDNA cloning and characterization of Xenopus beta 1, beta 2, beta 3, and beta 6 subunits.
    Ransom DG; Hens MD; DeSimone DW
    Dev Biol; 1993 Nov; 160(1):265-75. PubMed ID: 7693527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.