These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 13788934)

  • 21. Increasing the rate of drying reduces metabolic imbalance, lipid peroxidation and critical water content in radicles of garden pea (Pisum sativum L.).
    Ntuli TM; Pammenter NW; Berjak P
    Biol Res; 2013; 46(2):121-30. PubMed ID: 23959009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrate- and nitric oxide-induced plant growth in pea seedlings is linked to antioxidative metabolism and the ABA/GA balance.
    Vidal A; Cantabella D; Bernal-Vicente A; Díaz-Vivancos P; Hernández JA
    J Plant Physiol; 2018 Nov; 230():13-20. PubMed ID: 30138843
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts.
    Pandey V; Dixit V; Shyam R
    Protoplasma; 2009 Jul; 236(1-4):85-95. PubMed ID: 19582547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CHANGES IN THE FREE NUCLEOTIDE PATTERN OF PEA SEEDS IN RELATION TO GERMINATION.
    BROWN EG
    Biochem J; 1965 May; 95(2):509-14. PubMed ID: 14340101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pattern of expression and characteristics of a cysteine proteinase cDNA from germinating seeds of pea (Pisum sativum L.).
    Jones CG; Tucker GA; Lycett GW
    Biochim Biophys Acta; 1996 Aug; 1296(1):13-5. PubMed ID: 8765223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of storage temperature on viability, germination and antioxidant metabolism in Ginkgo biloba L. seeds.
    Tommasi F; Paciolla C; de Pinto MC; De Gara L
    Plant Physiol Biochem; 2006; 44(5-6):359-68. PubMed ID: 16889978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The biosynthesis of beta-amyrin and beta-sitosterol in germinating seeds of Pisum sativum.
    BAISTED DJ; CAPSTACK E; NES WR
    Biochemistry; 1962 May; 1():537-41. PubMed ID: 13864088
    [No Abstract]   [Full Text] [Related]  

  • 28. Enzymic reduction of cystine and glutathione in cultivated human fibroblast from normal subjects and patients with cystinosis.
    Kaye CI; Nadler HL
    J Lab Clin Med; 1975 Sep; 86(3):422-9. PubMed ID: 239080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase.
    Pader I; Sengupta R; Cebula M; Xu J; Lundberg JO; Holmgren A; Johansson K; Arnér ES
    Proc Natl Acad Sci U S A; 2014 May; 111(19):6964-9. PubMed ID: 24778250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential expression and functional analysis of three calmodulin isoforms in germinating pea (Pisum sativum L.) seeds.
    Duval FD; Renard M; Jaquinod M; Biou V; Montrichard F; Macherel D
    Plant J; 2002 Nov; 32(4):481-93. PubMed ID: 12445120
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomic and activity profiles of ascorbate-glutathione cycle enzymes in germinating barley embryo.
    Bønsager BC; Shahpiri A; Finnie C; Svensson B
    Phytochemistry; 2010 Oct; 71(14-15):1650-6. PubMed ID: 20727558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase.
    Petruzzelli L; Coraggio I; Leubner-Metzger G
    Planta; 2000 Jun; 211(1):144-9. PubMed ID: 10923715
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of raffinose oligosaccharide breakdown delays germination of pea seeds.
    Blöchl A; Peterbauer T; Richter A
    J Plant Physiol; 2007 Aug; 164(8):1093-6. PubMed ID: 17258350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protease inhibitor studies and cloning of a serine carboxypeptidase cDNA from germinating seeds of pea (Pisum sativum L.).
    Jones CG; Lycett GW; Tucker GA
    Eur J Biochem; 1996 Feb; 235(3):574-8. PubMed ID: 8654403
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance.
    Wang WQ; Møller IM; Song SQ
    J Proteomics; 2012 Dec; 77():68-86. PubMed ID: 22796356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Biochemical changes associated with cadmium and copper stress in germinating pea seeds (Pisum sativum L.)].
    Mihoub A; Chaoui A; El Ferjani E
    C R Biol; 2005 Jan; 328(1):33-41. PubMed ID: 15714878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in the protein patterns in pea (Pisum sativum L.) roots under the influence of long- and short-term chilling stress and post-stress recovery.
    Badowiec A; Swigonska S; Weidner S
    Plant Physiol Biochem; 2013 Oct; 71():315-24. PubMed ID: 24012770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzymatic breakdown of raffinose oligosaccharides in pea seeds.
    Blöchl A; Peterbauer T; Hofmann J; Richter A
    Planta; 2008 Jun; 228(1):99-110. PubMed ID: 18335235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds.
    Ferraro K; Jin AL; Nguyen TD; Reinecke DM; Ozga JA; Ro DK
    BMC Plant Biol; 2014 Sep; 14():238. PubMed ID: 25928382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the cycles of glutathione metabolism and transport.
    Meister A
    Curr Top Cell Regul; 1981; 18():21-58. PubMed ID: 6115737
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.