These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 13792829)

  • 1. Conversion of isovalerate to leucine by Ruminococcus flavefaciens.
    ALLISON MJ; BRYANT MP; DOETSCH RN
    Arch Biochem Biophys; 1959 Sep; 84():245-7. PubMed ID: 13792829
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on the metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. I. Incorporation of isovalerate into leucine.
    ALLISON MJ; BRYANT MP; DOETSCH RN
    J Bacteriol; 1962 Mar; 83(3):523-32. PubMed ID: 13860621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes.
    ALLISON MJ; BRYANT MP; KATZ I; KEENEY M
    J Bacteriol; 1962 May; 83(5):1084-93. PubMed ID: 13860622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The conversion of leucine carbon into CO2, fatty acids and other products by adipose tissue.
    FELLER DD; FEIST E
    Biochim Biophys Acta; 1962 Jul; 62():40-4. PubMed ID: 13892210
    [No Abstract]   [Full Text] [Related]  

  • 5. The conversion of D-xylose into volatile organic acids by rumen bacteria.
    PAZUR JH; SHUEY EW; GEORGI CE
    Arch Biochem Biophys; 1958 Oct; 77(2):387-94. PubMed ID: 13584002
    [No Abstract]   [Full Text] [Related]  

  • 6. Incorporation of DL-[1-14C]leucine and [1-14C]liso valeric acid into milk constituents by the perfused cow's udder.
    VERBEKE R; LAURYSSENS M; PEETERS G; JAMES AT
    Biochem J; 1959 Sep; 73(1):24-9. PubMed ID: 13855213
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies on the metabolism of valine, proline, leucine and isoleucine by rumen microorganisms in vitro.
    DEHORITY BA; JOHNSON RR; BENTLEY OG; MOXON AL
    Arch Biochem Biophys; 1958 Nov; 78(1):15-27. PubMed ID: 13595899
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of sheep-rumen contents on unsaturated fatty acids.
    SHORLAND FB; WEENINK RO; JOHNS AT; McDONALD IR
    Biochem J; 1957 Oct; 67(2):328-33. PubMed ID: 13471555
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of parenteral lipid on leucine metabolism: dependence of fatty acid chain length.
    Haymond MW; Tessari P; Beaufrere B; Rodriguez N; Bailey J; Miles JM
    JPEN J Parenter Enteral Nutr; 1988; 12(6 Suppl):94S-97S. PubMed ID: 3145988
    [No Abstract]   [Full Text] [Related]  

  • 10. Dietary Alfalfa and Calcium Salts of Long-Chain Fatty Acids Alter Protein Utilization, Microbial Populations, and Plasma Fatty Acid Profile in Holstein Freemartin Heifers.
    He Y; Qiu Q; Shao T; Niu W; Xia C; Wang H; Li Q; Gao Z; Yu Z; Su H; Cao B
    J Agric Food Chem; 2017 Dec; 65(50):10859-10867. PubMed ID: 29179547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a signature probe targeting the 16S-23S rRNA internal transcribed spacer of a ruminal Ruminococcus flavefaciens isolate from reindeer.
    Præsteng KE; Mackie RI; Cann IK; Mathiesen SD; Sundset MA
    Benef Microbes; 2011 Mar; 2(1):47-55. PubMed ID: 21831789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of isoleucine in the biosynthesis of branched-chain fatty acids by Micrococcus lysodeikticus.
    LENNARZ WJ
    Biochem Biophys Res Commun; 1961 Nov; 6():112-6. PubMed ID: 14463994
    [No Abstract]   [Full Text] [Related]  

  • 13. The transfer of norleucine carbon into CO2, fatty acids and plasma proteins by the isolated perfused rat liver.
    KANEKO JJ; CARNELIUS CE; ABRAHAM S
    Biochim Biophys Acta; 1961 Jan; 46():186-8. PubMed ID: 13751162
    [No Abstract]   [Full Text] [Related]  

  • 14. [Congenital lipid metabolism disorders].
    Tanaka K
    Naika; 1968 Oct; 22(4):856-70. PubMed ID: 4884621
    [No Abstract]   [Full Text] [Related]  

  • 15. Digestion in the rabbit's stomach.
    ALEXANDER F; CHOWDHURY AK
    Br J Nutr; 1958; 12(1):65-73. PubMed ID: 13523104
    [No Abstract]   [Full Text] [Related]  

  • 16. [alpha-Keto-beta-methyl-n-valeric acid and alpha,beta-dioxy-beta-methyl-n-valeric acid as precursors in the biosynthesis of isoleucine in wheat plants].
    KRETOVICH VL; KAGAN ZS; NELIUBIANA GM
    Biokhimiia; 1962; 27():181-87. PubMed ID: 14459590
    [No Abstract]   [Full Text] [Related]  

  • 17. Biosynthesis of long-chain hydrocarbons. II. Studies on the biosynthetic pathway in tobacco.
    Kaneda T
    Biochemistry; 1968 Mar; 7(3):1194-202. PubMed ID: 5661026
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of dietary supplementation of leaves and whole plant of Andrographis paniculata on rumen fermentation, fatty acid composition and microbiota in goats.
    Yusuf AL; Adeyemi KD; Samsudin AA; Goh YM; Alimon AR; Sazili AQ
    BMC Vet Res; 2017 Nov; 13(1):349. PubMed ID: 29178910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The metabolism of short-chain fatty acids in the sheep. V. Some interrelationships in the metabolism of fatty acids and glucose by sheep-rumen epithelial tissue.
    PENNINGTON RJ; PFANDER WH
    Biochem J; 1957 Jan; 65(1):109-11. PubMed ID: 13403878
    [No Abstract]   [Full Text] [Related]  

  • 20. The influence of transplantable rat mammary carcinomas on the chemical composition of the host.
    Carruthers C
    Oncology; 1969; 23(4):241-56. PubMed ID: 5807556
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.