These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 1379321)

  • 21. Coactivation of resistance vessels and muscle fibers with acetylcholine release from motor nerves.
    Welsh DG; Segal SS
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H156-63. PubMed ID: 9249486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of glomerular arteriolar tone by nitric oxide synthase inhibitors.
    Edwards RM; Trizna W
    J Am Soc Nephrol; 1993 Nov; 4(5):1127-32. PubMed ID: 7508276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insulin-induced arteriolar dilation after tyrosine kinase and nitric oxide synthase inhibition in hamster cheek pouch microcirculation.
    Bertuglia S; Colantuoni A
    J Vasc Res; 1998; 35(4):250-6. PubMed ID: 9701709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EDHF, but not NO or prostaglandins, is critical to evoke a conducted dilation upon ACh in hamster arterioles.
    Hoepfl B; Rodenwaldt B; Pohl U; De Wit C
    Am J Physiol Heart Circ Physiol; 2002 Sep; 283(3):H996-H1004. PubMed ID: 12181129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of EDHF in conduction of vasodilation along hamster cheek pouch arterioles in vivo.
    Welsh DG; Segal SS
    Am J Physiol Heart Circ Physiol; 2000 Jun; 278(6):H1832-9. PubMed ID: 10843879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers : evidence for a dysfunctional nitric oxide synthase.
    Heitzer T; Brockhoff C; Mayer B; Warnholtz A; Mollnau H; Henne S; Meinertz T; Münzel T
    Circ Res; 2000 Feb; 86(2):E36-41. PubMed ID: 10666424
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of NG-monomethyl L-arginine on endothelium-dependent relaxation in arterioles of one-kidney, one clip hypertensive rats.
    Nakamura T; Prewitt RL
    Hypertension; 1991 Jun; 17(6 Pt 2):875-80. PubMed ID: 2045169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of nitric oxide in endothelium-dependent vasodilation of hypercholesterolemic patients.
    Casino PR; Kilcoyne CM; Quyyumi AA; Hoeg JM; Panza JA
    Circulation; 1993 Dec; 88(6):2541-7. PubMed ID: 8252665
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of L-arginine on reactivity of hamster cheek pouch arterioles during diabetes mellitus.
    Mayhan WG; Patel KP; Sharpe GM
    Int J Microcirc Clin Exp; 1997; 17(3):107-12. PubMed ID: 9272460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Longchain n-3 polyunsaturated fatty acids and microvascular reactivity: observation in the hamster cheek pouch.
    Conde CM; Cyrino FZ; Bottino DA; Gardette J; Bouskela E
    Microvasc Res; 2007 May; 73(3):237-47. PubMed ID: 17196224
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of NG-monomethyl-L-arginine on arcade arterioles of rat spinotrapezius muscles.
    Nakamura T; Prewitt RL
    Am J Physiol; 1991 Jul; 261(1 Pt 2):H46-52. PubMed ID: 1858929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro.
    Moore PK; al-Swayeh OA; Chong NW; Evans RA; Gibson A
    Br J Pharmacol; 1990 Feb; 99(2):408-12. PubMed ID: 2328404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of nitric oxide to coronary vasodilation during hypercapnic acidosis.
    Gurevicius J; Salem MR; Metwally AA; Silver JM; Crystal GJ
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H39-47. PubMed ID: 7530920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hindlimb unweighting alters endothelium-dependent vasodilation and ecNOS expression in soleus arterioles.
    Schrage WG; Woodman CR; Laughlin MH
    J Appl Physiol (1985); 2000 Oct; 89(4):1483-90. PubMed ID: 11007586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mediator role of prostaglandins in acetylcholine-induced vasodilation and control of resting vascular diameter in the hamster cremaster microcirculation in vivo.
    de Wit C; von Bismarck P; Pohl U
    J Vasc Res; 1993; 30(5):272-8. PubMed ID: 8399988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glutamate-induced disruption of the blood-brain barrier in rats. Role of nitric oxide.
    Mayhan WG; Didion SP
    Stroke; 1996 May; 27(5):965-9; discussion 970. PubMed ID: 8623120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo location and mechanism of EDHF-mediated vasodilation in canine coronary microcirculation.
    Nishikawa Y; Stepp DW; Chilian WM
    Am J Physiol; 1999 Sep; 277(3):H1252-9. PubMed ID: 10484447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arteriolar dilation produced by venule endothelium-derived nitric oxide.
    Falcone JC; Meininger GA
    Microcirculation; 1997 Jun; 4(2):303-10. PubMed ID: 9219222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects in cats of inhibition of nitric oxide synthesis on cerebral vasodilation and endothelium-derived relaxing factor from acetylcholine.
    Wei EP; Kukreja R; Kontos HA
    Stroke; 1992 Nov; 23(11):1623-8; discussion 1628-9. PubMed ID: 1440711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age-dependent changes in the regulatory roles of nitric oxide and vasodilator prostanoids on the mechanical activities of isolated rabbit spinal arterioles.
    Yashiro Y; Ohhashi T
    Jpn J Physiol; 2003 Oct; 53(5):335-42. PubMed ID: 14975179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.