These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 13795788)

  • 1. Influence of basic and acidic ions on the formation of 2, 3-butanediol by Serratia marcescens.
    BAHADUR K; DUBE JN
    Jpn J Microbiol; 1959 Jan; 3():49-52. PubMed ID: 13795788
    [No Abstract]   [Full Text] [Related]  

  • 2. A study of the influence of milk, phosphate and calcium carbonate on the formation of 2,3 butanediol in Serratia marcescens cultures.
    BAHADUR K; RANGANAYAKI S
    Jpn J Microbiol; 1958 Apr; 2(2):197-201. PubMed ID: 13575017
    [No Abstract]   [Full Text] [Related]  

  • 3. Production and properties of 2,3-butanediol; dissimilation of glucose by Serratia marcescens.
    NEISH AC; BLACKWOOD AC
    Can J Res; 1947 Jan; 25(1):65-9. PubMed ID: 20285019
    [No Abstract]   [Full Text] [Related]  

  • 4. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production.
    Bai F; Dai L; Fan J; Truong N; Rao B; Zhang L; Shen Y
    J Ind Microbiol Biotechnol; 2015 May; 42(5):779-86. PubMed ID: 25663525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial production of 2,3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30.
    Zhang L; Sun J; Hao Y; Zhu J; Chu J; Wei D; Shen Y
    J Ind Microbiol Biotechnol; 2010 Aug; 37(8):857-62. PubMed ID: 20467779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial production of 2,3-butanediol by a newly-isolated strain of Serratia marcescens.
    Shi L; Gao S; Yu Y; Yang H
    Biotechnol Lett; 2014 May; 36(5):969-73. PubMed ID: 24375234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of ChiR function in Serratia marcescens and its application for improving 2,3-butanediol from crystal chitin.
    Yan Q; Hong E; Fong SS
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7567-7578. PubMed ID: 28884384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and regulation of the 2,3-butanediol pathway in Serratia marcescens.
    Rao B; Zhang LY; Sun J; Su G; Wei D; Chu J; Zhu J; Shen Y
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2147-59. PubMed ID: 21983710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of 2,3-butanediaol formation by Serratia marcescens.
    BAHADUR K; DUBE JN
    Arch Mikrobiol; 1958; 32(1):16-9. PubMed ID: 13617968
    [No Abstract]   [Full Text] [Related]  

  • 10. Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30.
    Zhang L; Yang Y; Sun J; Shen Y; Wei D; Zhu J; Chu J
    Bioresour Technol; 2010 Mar; 101(6):1961-7. PubMed ID: 19932023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30.
    Zhang L; Xu Q; Zhan S; Li Y; Lin H; Sun S; Sha L; Hu K; Guan X; Shen Y
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1175-84. PubMed ID: 23666479
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Jin W; Lin H; Gao H; Guo Z; Li J; Xu Q; Sun S; Hu K; Lee JK; Zhang L
    J Microbiol Biotechnol; 2019 Apr; 29(4):596-606. PubMed ID: 30856708
    [No Abstract]   [Full Text] [Related]  

  • 13. N-acyl-L-homoserine lactone quorum sensing controls butanediol fermentation in Serratia plymuthica RVH1 and Serratia marcescens MG1.
    Van Houdt R; Moons P; Hueso Buj M; Michiels CW
    J Bacteriol; 2006 Jun; 188(12):4570-2. PubMed ID: 16740963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of minerals on the formation of 2,3 butanediol by Aerobacter aerogenes.
    RANGANAYAKI S; BAHADUR K
    Arch Mikrobiol; 1958; 29(4):363-7. PubMed ID: 13534444
    [No Abstract]   [Full Text] [Related]  

  • 15. Mechanisms of formation of stereoisomers of 2,3-butanediol during microbial fermentation of sugars.
    TAYLOR MB; JUNI E
    Nature; 1958 May; 181(4620):1389-90. PubMed ID: 13552677
    [No Abstract]   [Full Text] [Related]  

  • 16. A cyclic pathway for the bacterial dissimilation of 2, 3-butanediol, acetylmethylcarbinol, and diacetyl. I. General aspects of the 2, 3-butanediol cycle.
    JUNI E; HEYM GA
    J Bacteriol; 1956 Apr; 71(4):425-32. PubMed ID: 13319256
    [No Abstract]   [Full Text] [Related]  

  • 17. The influence of iron, sulphite and paraformaldehyde on the formation of 2,3-butanediol in the cultures of Bacillus polymyxa.
    BAHADUR K; RANGANAYAKI S
    Arch Mikrobiol; 1959; 32(4):369-72. PubMed ID: 13650576
    [No Abstract]   [Full Text] [Related]  

  • 18. [On metabolism and distribution of 1,2-propanediol, 1,2-butanediol and 1,2,4-butanetriol in the rabbit].
    STRACK E; BIESOLD D; THEILE H
    Z Gesamte Exp Med; 1960; 132():522-37. PubMed ID: 13835042
    [No Abstract]   [Full Text] [Related]  

  • 19. Bacterial 2,3-butanediol dehydrogenases.
    Höhn-Bentz H; Radler F
    Arch Microbiol; 1978 Feb; 116(2):197-203. PubMed ID: 25056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Serratia marcescens with the bacterial hemoglobin gene: alterations in fermentation pathways.
    Wei ML; Webster DA; Stark BC
    Biotechnol Bioeng; 1998 Sep; 59(5):640-6. PubMed ID: 10099382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.