BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 1380154)

  • 1. Specificity of antisense oligonucleotides in vivo.
    Woolf TM; Melton DA; Jennings CG
    Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7305-9. PubMed ID: 1380154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of antisense oligonucleotides on the expression of hepatocellular bile acid and organic anion uptake systems in Xenopus laevis oocytes.
    Hagenbuch B; Scharschmidt BF; Meier PJ
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):901-4. PubMed ID: 8670169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A more efficient and specific strategy in the ablation of mRNA in Xenopus laevis using mixtures of antisense oligos.
    Morgan R; Edge M; Colman A
    Nucleic Acids Res; 1993 Sep; 21(19):4615-20. PubMed ID: 8233799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified mRNA rescue of maternal CK1/8 mRNA depletion in Xenopus oocytes.
    Raats JM; Gell D; Vickers L; Heasman J; Wylie C
    Antisense Nucleic Acid Drug Dev; 1997 Aug; 7(4):263-77. PubMed ID: 9303179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The stability, toxicity and effectiveness of unmodified and phosphorothioate antisense oligodeoxynucleotides in Xenopus oocytes and embryos.
    Woolf TM; Jennings CG; Rebagliati M; Melton DA
    Nucleic Acids Res; 1990 Apr; 18(7):1763-9. PubMed ID: 1692405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of antisense oligonucleotides in Xenopus oocytes.
    Hulstrand AM; Schneider PN; Houston DW
    Methods; 2010 May; 51(1):75-81. PubMed ID: 20045732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathways of degradation and mechanism of action of antisense oligonucleotides in Xenopus laevis embryos.
    Dagle JM; Weeks DL; Walder JA
    Antisense Res Dev; 1991; 1(1):11-20. PubMed ID: 1668307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of modified antisense oligonucleotides in Xenopus laevis embryos.
    Lennox KA; Sabel JL; Johnson MJ; Moreira BG; Fletcher CA; Rose SD; Behlke MA; Laikhter AL; Walder JA; Dagle JM
    Oligonucleotides; 2006; 16(1):26-42. PubMed ID: 16584293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination of heterogenous mRNAs encoding strychnine-sensitive glycine receptors in Xenopus oocytes by antisense oligonucleotides.
    Akagi H; Patton DE; Miledi R
    Proc Natl Acad Sci U S A; 1989 Oct; 86(20):8103-7. PubMed ID: 2479016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antisense phosphorothioate oligonucleotides direct both site-specific and nonspecific RNAse H cleavage of in vitro synthesized p120 mRNA.
    Weidner DA; Busch H
    Oncol Res; 1994; 6(6):237-42. PubMed ID: 7865899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and accurate determination of sites along the FUT2 in vitro transcript that are accessible to antisense oligonucleotides by application of secondary structure predictions and RNase H in combination with MALDI-TOF mass spectrometry.
    Gabler A; Krebs S; Seichter D; Förster M
    Nucleic Acids Res; 2003 Aug; 31(15):e79. PubMed ID: 12888531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endonucleolytic cleavage of a maternal homeo box mRNA in Xenopus oocytes.
    Brown BD; Harland RM
    Genes Dev; 1990 Nov; 4(11):1925-35. PubMed ID: 1980477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-dependent transmitter secretion reconstituted in Xenopus oocytes: requirement for synaptophysin.
    Alder J; Lu B; Valtorta F; Greengard P; Poo MM
    Science; 1992 Jul; 257(5070):657-61. PubMed ID: 1353905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a therapeutic inhibition of dystrophin exon 23 splicing in mdx mouse muscle induced by antisense oligoribonucleotides (splicomers): target sequence optimisation using oligonucleotide arrays.
    Graham IR; Hill VJ; Manoharan M; Inamati GB; Dickson G
    J Gene Med; 2004 Oct; 6(10):1149-58. PubMed ID: 15386737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An antisense mRNA directs the covalent modification of the transcript encoding fibroblast growth factor in Xenopus oocytes.
    Kimelman D; Kirschner MW
    Cell; 1989 Nov; 59(4):687-96. PubMed ID: 2479482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of subunit-specific antisense oligodeoxynucleotides to define developmental changes in the properties of N-methyl-D-aspartate receptors.
    Zhong J; Gribkoff VK; Molinoff PB
    Mol Pharmacol; 1996 Sep; 50(3):631-8. PubMed ID: 8794904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antisense oligonucleotide-directed cleavage of mRNA in Xenopus oocytes and eggs.
    Shuttleworth J; Colman A
    EMBO J; 1988 Feb; 7(2):427-34. PubMed ID: 2452730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo generation of highly abundant sequence-specific oligonucleotides for antisense and triplex gene regulation.
    Noonberg SB; Scott GK; Garovoy MR; Benz CC; Hunt CA
    Nucleic Acids Res; 1994 Jul; 22(14):2830-6. PubMed ID: 8052538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression cloning of rat renal Na+/SO4(2-) cotransport.
    Markovich D; Forgo J; Stange G; Biber J; Murer H
    Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8073-7. PubMed ID: 7690140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antisense oligonucleotides to CRABP I and II alter the expression of TGF-beta 3, RAR-beta, and tenascin in primary cultures of embryonic palate cells.
    Nugent P; Greene RM
    In Vitro Cell Dev Biol Anim; 1995; 31(7):553-8. PubMed ID: 8528505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.