These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 1380303)

  • 1. Interaction of catalytic-site mutants of Bacillus subtilis alpha-amylase with substrates and acarbose.
    Takase K
    Biochim Biophys Acta; 1992 Aug; 1122(3):278-82. PubMed ID: 1380303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis of active site residues in Bacillus subtilis alpha-amylase.
    Takase K; Matsumoto T; Mizuno H; Yamane K
    Biochim Biophys Acta; 1992 Apr; 1120(3):281-8. PubMed ID: 1576155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of a catalytic-site mutant alpha-amylase from Bacillus subtilis complexed with maltopentaose.
    Fujimoto Z; Takase K; Doui N; Momma M; Matsumoto T; Mizuno H
    J Mol Biol; 1998 Mar; 277(2):393-407. PubMed ID: 9514750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular structure of a barley alpha-amylase-inhibitor complex: implications for starch binding and catalysis.
    Kadziola A; Søgaard M; Svensson B; Haser R
    J Mol Biol; 1998 Apr; 278(1):205-17. PubMed ID: 9571044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose.
    Cha HJ; Yoon HG; Kim YW; Lee HS; Kim JW; Kweon KS; Oh BH; Park KH
    Eur J Biochem; 1998 Apr; 253(1):251-62. PubMed ID: 9578484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the role of a mobile loop in substrate binding and enzyme activity of human salivary amylase.
    Ramasubbu N; Ragunath C; Mishra PJ
    J Mol Biol; 2003 Jan; 325(5):1061-76. PubMed ID: 12527308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of Bacillus subtilis alpha-amylase in complex with acarbose.
    Kagawa M; Fujimoto Z; Momma M; Takase K; Mizuno H
    J Bacteriol; 2003 Dec; 185(23):6981-4. PubMed ID: 14617662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis of the putative active site of endoglucanase K from Bacillus sp. KSM-330.
    Ozaki K; Sumitomo N; Hayashi Y; Kawai S; Ito S
    Biochim Biophys Acta; 1994 Aug; 1207(2):159-64. PubMed ID: 8075149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the subsite structure of amylases. II. Difference-spectrophotometric studies on the interaction of maltotriose with liquefying alpha-amylase from Bacillus subtilis.
    Ohnishi M; Kegai H; Hiromi K
    J Biochem; 1975 Aug; 78(2):247-51. PubMed ID: 819426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan residues of saccharifying alpha-amylase from Bacillus subtilis. A kinetic discrimination of states of tryptophan residues using N-bromosuccinimide.
    Fujimori H; Ohnishi M; Hiromi K
    J Biochem; 1978 May; 83(5):1503-10. PubMed ID: 96111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The number of subsites in the active site of saccharifying alpha-amylase from Bacillus subtilis.
    Shibaoka T; Miyano K; Watanabe T
    J Biochem; 1974 Sep; 76(3):475-9. PubMed ID: 4215806
    [No Abstract]   [Full Text] [Related]  

  • 12. Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions.
    Yang H; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J
    J Biotechnol; 2013 Mar; 164(1):59-66. PubMed ID: 23262127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the native form and the carboxy-terminally truncated halotolerant form of α-amylases from Bacillus subtilis strain FP-133.
    Takenaka S; Miyatake A; Tanaka K; Kuntiya A; Techapun C; Leksawasdi N; Seesuriyachan P; Chaiyaso T; Watanabe M; Yoshida K
    J Basic Microbiol; 2015 Jun; 55(6):780-9. PubMed ID: 25689045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gln212, Asn270, and Arg301 are critical for catalysis by adenylosuccinate lyase from Bacillus subtilis.
    Segall ML; Colman RF
    Biochemistry; 2004 Jun; 43(23):7391-402. PubMed ID: 15182182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Difference-spectrophotometry of the interaction of cycloheptaamylose with saccharifying alpha-amylase from Bacillus subtilis.
    Onishi M; Hatano H; Hiromi K
    J Biochem; 1973 Sep; 74(3):519-24. PubMed ID: 4202121
    [No Abstract]   [Full Text] [Related]  

  • 16. Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley alpha-amylase 1.
    Søgaard M; Kadziola A; Haser R; Svensson B
    J Biol Chem; 1993 Oct; 268(30):22480-4. PubMed ID: 7901200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-Based Engineering of a Maltooligosaccharide-Forming Amylase To Enhance Product Specificity.
    Xie X; Ban X; Gu Z; Li C; Hong Y; Cheng L; Li Z
    J Agric Food Chem; 2020 Jan; 68(3):838-844. PubMed ID: 31896254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reassessment of acarbose as a transition state analogue inhibitor of cyclodextrin glycosyltransferase.
    Mosi R; Sham H; Uitdehaag JC; Ruiterkamp R; Dijkstra BW; Withers SG
    Biochemistry; 1998 Dec; 37(49):17192-8. PubMed ID: 9860832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis reveals critical importance of the catalytic site in the binding of alpha-amylase by wheat proteinaceous inhibitor.
    Takase K
    Biochemistry; 1994 Jun; 33(25):7925-30. PubMed ID: 8011655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the Aspergillus oryzae alpha-amylase complexed with the inhibitor acarbose at 2.0 A resolution.
    Brzozowski AM; Davies GJ
    Biochemistry; 1997 Sep; 36(36):10837-45. PubMed ID: 9283074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.