BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 1380472)

  • 1. The molecular mechanism of the control of excitation energy dissipation in chloroplast membranes. Inhibition of delta pH-dependent quenching of chlorophyll fluorescence by dicyclohexylcarbodiimide.
    Ruban AV; Walters RG; Horton P
    FEBS Lett; 1992 Sep; 309(2):175-9. PubMed ID: 1380472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of proton-active residues in a higher plant light-harvesting complex.
    Walters RG; Ruban AV; Horton P
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):14204-9. PubMed ID: 8943085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of thermal dissipation of absorbed quanta during energy-dependent quenching of chlorophyll fluorescence in photosynthetic membranes.
    Yahyaoui W; Harnois J; Carpentier R
    FEBS Lett; 1998 Nov; 440(1-2):59-63. PubMed ID: 9862425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single point mutation (E166Q) prevents dicyclohexylcarbodiimide binding to the photosystem II subunit CP29.
    Pesaresi P; SandonĂ  D; Giuffra E; Bassi R
    FEBS Lett; 1997 Feb; 402(2-3):151-6. PubMed ID: 9037185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher plant light-harvesting complexes LHCIIa and LHCIIc are bound by dicyclohexylcarbodiimide during inhibition of energy dissipation.
    Walters RG; Ruban AV; Horton P
    Eur J Biochem; 1994 Dec; 226(3):1063-9. PubMed ID: 7813461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex.
    Horton P; Ruban AV; Rees D; Pascal AA; Noctor G; Young AJ
    FEBS Lett; 1991 Nov; 292(1-2):1-4. PubMed ID: 1959588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants.
    Ruban AV; Young AJ; Horton P
    Biochemistry; 1996 Jan; 35(3):674-8. PubMed ID: 8547246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between the binding of dicyclohexylcarbodiimide and quenching of chlorophyll fluorescence in the light-harvesting proteins of photosystem II.
    Ruban AV; Pesaresi P; Wacker U; Irrgang KD; Bassi R; Horton P
    Biochemistry; 1998 Aug; 37(33):11586-91. PubMed ID: 9708995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii.
    Tokutsu R; Minagawa J
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):10016-21. PubMed ID: 23716695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH.
    Bruce D; Samson G; Carpenter C
    Biochemistry; 1997 Jan; 36(4):749-55. PubMed ID: 9020772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a nonphotochemical quenching-deficient Arabidopsis mutant possessing an intact PsbS protein, xanthophyll cycle and lumen acidification.
    Kalituho L; Grasses T; Graf M; Rech J; Jahns P
    Planta; 2006 Feb; 223(3):532-41. PubMed ID: 16136330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward an understanding of the mechanism of nonphotochemical quenching in green plants.
    Holt NE; Fleming GR; Niyogi KK
    Biochemistry; 2004 Jul; 43(26):8281-9. PubMed ID: 15222740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular mechanism for qE-quenching.
    Crofts AR; Yerkes CT
    FEBS Lett; 1994 Oct; 352(3):265-70. PubMed ID: 7925984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions.
    Niinemets U ; Kull O
    Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is PsbS the site of non-photochemical quenching in photosynthesis?
    Niyogi KK; Li XP; Rosenberg V; Jung HS
    J Exp Bot; 2005 Jan; 56(411):375-82. PubMed ID: 15611143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of ascorbate and the Mehler peroxidase reaction on non-photochemical quenching of chlorophyll fluorescence in maize mesophyll chloroplasts.
    Ivanov B; Edwards G
    Planta; 2000 Apr; 210(5):765-74. PubMed ID: 10805448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A major light-harvesting polypeptide of photosystem II functions in thermal dissipation.
    Elrad D; Niyogi KK; Grossman AR
    Plant Cell; 2002 Aug; 14(8):1801-16. PubMed ID: 12172023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein.
    Li XP; Gilmore AM; Caffarri S; Bassi R; Golan T; Kramer D; Niyogi KK
    J Biol Chem; 2004 May; 279(22):22866-74. PubMed ID: 15033974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allosteric regulation of the light-harvesting system of photosystem II.
    Horton P; Ruban AV; Wentworth M
    Philos Trans R Soc Lond B Biol Sci; 2000 Oct; 355(1402):1361-70. PubMed ID: 11127991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of photosystem I-derived protons with the water-splitting enzyme complex. Evidence for localized domains.
    Theg SM; Belanger KM; Dilley RA
    J Bioenerg Biomembr; 1987 Feb; 19(1):53-68. PubMed ID: 3032930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.