These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 1380824)

  • 1. Influence of acylation on the channel characteristics of gramicidin A.
    Vogt TC; Killian JA; De Kruijff B; Andersen OS
    Biochemistry; 1992 Aug; 31(32):7320-4. PubMed ID: 1380824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gramicidin channels in phospholipid bilayers with unsaturated acyl chains.
    Girshman J; Greathouse DV; Koeppe RE; Andersen OS
    Biophys J; 1997 Sep; 73(3):1310-9. PubMed ID: 9284299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and channel-forming characteristics of gramicidin K's: a family of naturally occurring acylated gramicidins.
    Williams LP; Narcessian EJ; Andersen OS; Waller GR; Taylor MJ; Lazenby JP; Hinton JF; Koeppe RE
    Biochemistry; 1992 Aug; 31(32):7311-9. PubMed ID: 1380823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association.
    O'Connell AM; Koeppe RE; Andersen OS
    Science; 1990 Nov; 250(4985):1256-9. PubMed ID: 1700867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of gramicidin channel structure and function by the aliphatic "spacer" residues 10, 12, and 14 between the tryptophans.
    Jude AR; Greathouse DV; Koeppe RE; Providence LL; Andersen OS
    Biochemistry; 1999 Jan; 38(3):1030-9. PubMed ID: 9893999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics of gramicidin hybrid channel formation as a test for structural equivalence. Side-chain substitutions in the native sequence.
    Durkin JT; Koeppe RE; Andersen OS
    J Mol Biol; 1990 Jan; 211(1):221-34. PubMed ID: 1688951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gramicidin channels that have no tryptophan residues.
    Fonseca V; Daumas P; Ranjalahy-Rasoloarijao L; Heitz F; Lazaro R; Trudelle Y; Andersen OS
    Biochemistry; 1992 Jun; 31(23):5340-50. PubMed ID: 1376621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic view of activation energies of proton transfer in various gramicidin A channels.
    Chernyshev A; Cukierman S
    Biophys J; 2002 Jan; 82(1 Pt 1):182-92. PubMed ID: 11751307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attenuation of proton currents by methanol in a dioxolane-linked gramicidin A channel in different lipid bilayers.
    Quigley EP; Emerick AJ; Crumrine DS; Cukierman S
    Biophys J; 1998 Dec; 75(6):2811-20. PubMed ID: 9826603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-dependent gating of an asymmetric gramicidin channel.
    Oiki S; Koeppe RE; Andersen OS
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):2121-5. PubMed ID: 7534411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide backbone chemistry and membrane channel function: effects of a single amide-to-ester replacement on gramicidin channel structure and function.
    Jude AR; Providence LL; Schmutzer SE; Shobana S; Greathouse DV; Andersen OS; Koeppe R
    Biochemistry; 2001 Feb; 40(5):1460-72. PubMed ID: 11170474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage-dependent formation of gramicidin channels in lipid bilayers.
    Sandblom J; Galvanovskis J; Jilderos B
    Biophys J; 2001 Aug; 81(2):827-37. PubMed ID: 11463628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formamidinium-induced dimer stabilization and flicker block behavior in homo- and heterodimer channels formed by gramicidin A and N-acetyl gramicidin A.
    Seoh SA; Busath DD
    Biophys J; 1993 Nov; 65(5):1817-27. PubMed ID: 7507714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilizing effect of D-alanine2 in gramicidin channels.
    Mattice GL; Koeppe RE; Providence LL; Andersen OS
    Biochemistry; 1995 May; 34(20):6827-37. PubMed ID: 7538788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of acylated gramicidins and the influence of acylation on the interfacial properties and conformational behavior of gramicidin A.
    Vogt TC; Killian JA; Demel RA; De Kruijff B
    Biochim Biophys Acta; 1991 Nov; 1069(2):157-64. PubMed ID: 1718430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open channel noise. V. Fluctuating barriers to ion entry in gramicidin A channels.
    Heinemann SH; Sigworth FJ
    Biophys J; 1990 Mar; 57(3):499-514. PubMed ID: 1689592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobic coupling of lipid bilayer energetics to channel function.
    Goforth RL; Chi AK; Greathouse DV; Providence LL; Koeppe RE; Andersen OS
    J Gen Physiol; 2003 May; 121(5):477-93. PubMed ID: 12719487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rimantadine effects on the elasticity of bilayer lipid membranes and on ion transport through gramicidin D channels.
    Hianik T; Laputková G; Poláková K
    Gen Physiol Biophys; 1990 Aug; 9(4):391-402. PubMed ID: 1703099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-channel studies on linear gramicidins with altered amino acid side chains. Effects of altering the polarity of the side chain at position 1 in gramicidin A.
    Russell EW; Weiss LB; Navetta FI; Koeppe RE; Andersen OS
    Biophys J; 1986 Mar; 49(3):673-86. PubMed ID: 2421794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.