BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1381106)

  • 1. Subcellular localization of transferrin and pyrophosphate in liver cells after perfusion in situ or incubation in vitro.
    Nilsen T; Romslo I
    Scand J Clin Lab Invest; 1992 Sep; 52(5):373-8. PubMed ID: 1381106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake and subcellular processing of 59Fe-125I-labelled transferrin by rat liver.
    Morgan EH; Smith GD; Peters TJ
    Biochem J; 1986 Jul; 237(1):163-73. PubMed ID: 3800875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcellular localization of transferrin protein and iron in the perfused rat liver. Effect of Triton WR 1339, digitonin and temperature.
    Sibille JC; Octave JN; Schneider YJ; Trouet A; Crichton R
    Eur J Biochem; 1986 Feb; 155(1):47-55. PubMed ID: 3948880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid-phase marker transport in rat liver: free-flow electrophoresis separates distinct endosome subpopulations.
    Ellinger I; Klapper H; Fuchs R
    Electrophoresis; 1998 Jun; 19(7):1154-61. PubMed ID: 9662178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake of iron from transferrin by isolated hepatocytes. The effect of cellular energy metabolism on the intracellular distribution of iron and transferrin.
    Thorstensen K; Romslo I
    Scand J Clin Lab Invest; 1987 Dec; 47(8):837-46. PubMed ID: 3433005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate of injected glucagon taken up by rat liver in vivo. Degradation of internalized ligand in the endosomal compartment.
    Authier F; Janicot M; Lederer F; Desbuquois B
    Biochem J; 1990 Dec; 272(3):703-12. PubMed ID: 2268296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of hepatic iron uptake from native and denatured transferrin and its subcellular metabolism in the liver cell.
    Milsom JP; Batey RG
    Biochem J; 1979 Jul; 182(1):117-25. PubMed ID: 496901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internalization and subcellular localization of transferrin and transferrin receptors in HeLa cells.
    Lamb JE; Ray F; Ward JH; Kushner JP; Kaplan J
    J Biol Chem; 1983 Jul; 258(14):8751-8. PubMed ID: 6305999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake and distribution of transferrin and iron in perfused, iron-deficient rat liver.
    Holmes JM; Morgan EH
    Am J Physiol; 1989 Jun; 256(6 Pt 1):G1022-7. PubMed ID: 2735408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 125I-Insulin internalization by perfused rat liver: comparison of its subcellular distribution with that of a lysosomally targeted molecule, 125I-asialofetuin.
    Ward WF
    Horm Metab Res; 1984 Oct; 16(10):509-12. PubMed ID: 6209195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of injected 125I-labeled cholera toxin taken up by rat liver in vivo. Generation of the active A1 peptide in the endosomal compartment.
    Janicot M; Desbuquois B
    Eur J Biochem; 1987 Mar; 163(2):433-42. PubMed ID: 3816813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular distribution of human asialotransferrin type 3 in the rat liver.
    Debanne MT; Regoeczi E
    J Biol Chem; 1981 Nov; 256(21):11266-72. PubMed ID: 7287766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcellular distribution of recently absorbed iron and of transferrin in the mouse duodenal mucosa.
    Osterloh K; Snape S; Simpson RJ; Grindley H; Peters TJ
    Biochim Biophys Acta; 1988 Apr; 969(2):166-75. PubMed ID: 3355863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatic endosome fractions contain an ATP-driven proton pump.
    Saermark T; Flint N; Evans WH
    Biochem J; 1985 Jan; 225(1):51-8. PubMed ID: 2983664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New application of a subcellular fractionation method to kidney and testis for the determination of conjugated linoleic acid in selected cell organelles of healthy and cancerous human tissues.
    Hoffmann K; Blaudszun J; Brunken C; Höpker WW; Tauber R; Steinhart H
    Anal Bioanal Chem; 2005 Mar; 381(6):1138-44. PubMed ID: 15761741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of glucagon in isolated liver endosomes. ATP-dependence and partial characterization of degradation products.
    Authier F; Desbuquois B
    Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):211-8. PubMed ID: 1741749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-yield isolation of functionally competent endosomes from mouse lymphocytes.
    Beaumelle BD; Hopkins CR
    Biochem J; 1989 Nov; 264(1):137-49. PubMed ID: 2604710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endocytosis and subcellular distribution of transferrin in rat liver.
    Goldenberg H; Wallner E; Pumm R; Hüttinger M
    Prog Clin Biol Res; 1988; 270():427-9. PubMed ID: 3413183
    [No Abstract]   [Full Text] [Related]  

  • 19. Analytical subcellular fractionation of rat liver with special reference to the localisation of putative plasma membrane marker enzymes.
    Smith GD; Peters TJ
    Eur J Biochem; 1980 Feb; 104(1):305-11. PubMed ID: 7371635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of insulin in isolated liver endosomes is functionally linked to ATP-dependent endosomal acidification.
    Desbuquois B; Janicot M; Dupuis A
    Eur J Biochem; 1990 Oct; 193(2):501-12. PubMed ID: 2146119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.