These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 1381172)
21. Metabolism of 3-chlorobenzoate by a Pseudomonas (diff) spp. Vora KA; Modi VV Indian J Exp Biol; 1989 Nov; 27(11):967-71. PubMed ID: 2620936 [TBL] [Abstract][Full Text] [Related]
22. Identification of a meta-cleavage pathway for metabolism of phenoxyacetic acid and phenol in Pseudomonas cepacia AC1100. Ghadi SC; Sangodkar UM Biochem Biophys Res Commun; 1994 Oct; 204(2):983-93. PubMed ID: 7526858 [TBL] [Abstract][Full Text] [Related]
23. Selection of Pseudomonas sp. strain HBP1 Prp for metabolism of 2-propylphenol and elucidation of the degradative pathway. Kohler HP; van der Maarel MJ; Kohler-Staub D Appl Environ Microbiol; 1993 Mar; 59(3):860-6. PubMed ID: 8481010 [TBL] [Abstract][Full Text] [Related]
24. Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. Mars AE; Kasberg T; Kaschabek SR; van Agteren MH; Janssen DB; Reineke W J Bacteriol; 1997 Jul; 179(14):4530-7. PubMed ID: 9226262 [TBL] [Abstract][Full Text] [Related]
25. [Purification and properties of pyrocatechase II from Pseudomonas putida strain 87]. Solianikova IP; Mal'tseva OV; Golovleva LA Biokhimiia; 1992 Dec; 57(12):1883-91. PubMed ID: 1294257 [TBL] [Abstract][Full Text] [Related]
26. Metabolism of 2-chlorobenzoic acid in Pseudomonas stutzeri. Kozlovsky SA; Kunc F Folia Microbiol (Praha); 1995; 40(5):454-6. PubMed ID: 8846991 [TBL] [Abstract][Full Text] [Related]
27. Extradiol cleavage of 3-substituted catechols by an intradiol dioxygenase, pyrocatechase, from a Pseudomonad. Fujiwara M; Golovleva LA; Saeki Y; Nozaki M; Hayaishi O J Biol Chem; 1975 Jul; 250(13):4848-55. PubMed ID: 238971 [TBL] [Abstract][Full Text] [Related]
28. The chlorobenzoate dioxygenase genes of Burkholderia sp. strain NK8 involved in the catabolism of chlorobenzoates. Francisco P; Ogawa N; Suzuki K; Miyashita K Microbiology (Reading); 2001 Jan; 147(Pt 1):121-33. PubMed ID: 11160806 [TBL] [Abstract][Full Text] [Related]
29. Properties of the trihydroxytoluene oxygenase from Burkholderia cepacia R34: an extradiol dioxygenase from the 2,4-dinitrotoluene pathway. Johnson GR; Jain RK; Spain JC Arch Microbiol; 2000 Feb; 173(2):86-90. PubMed ID: 10795678 [TBL] [Abstract][Full Text] [Related]
30. Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Klecka GM; Gibson DT Appl Environ Microbiol; 1981 May; 41(5):1159-65. PubMed ID: 7259155 [TBL] [Abstract][Full Text] [Related]
31. Degradation of phenol and phenolic compounds by Pseudomonas putida EKII. Hinteregger C; Leitner R; Loidl M; Ferschl A; Streichsbier F Appl Microbiol Biotechnol; 1992 May; 37(2):252-9. PubMed ID: 1368244 [TBL] [Abstract][Full Text] [Related]
32. Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134(pJP4) in 3-chlorobenzoic acid. Pérez-Pantoja D; Ledger T; Pieper DH; González B J Bacteriol; 2003 Mar; 185(5):1534-42. PubMed ID: 12591870 [TBL] [Abstract][Full Text] [Related]
33. Pathways for 3-chloro- and 4-chlorobenzoate degradation in Pseudomonas aeruginosa 3mT. Ajithkumar PV; Kunhi AA Biodegradation; 2000; 11(4):247-61. PubMed ID: 11432583 [TBL] [Abstract][Full Text] [Related]
34. Aerobic degradation of polychlorinated biphenyls by Alcaligenes sp. JB1: metabolites and enzymes. Commandeur LC; May RJ; Mokross H; Bedard DL; Reineke W; Govers HA; Parsons JR Biodegradation; 1996-1997; 7(6):435-43. PubMed ID: 9188193 [TBL] [Abstract][Full Text] [Related]
35. Ferredoxin-mediated reactivation of the chlorocatechol 2,3-dioxygenase from Pseudomonas putida GJ31. Tropel D; Meyer C; Armengaud J; Jouanneau Y Arch Microbiol; 2002 Apr; 177(4):345-51. PubMed ID: 11889489 [TBL] [Abstract][Full Text] [Related]
36. Chlorocatechols substituted at positions 4 and 5 are substrates of the broad-spectrum chlorocatechol 1,2-dioxygenase of Pseudomonas chlororaphis RW71. Potrawfke T; Armengaud J; Wittich RM J Bacteriol; 2001 Feb; 183(3):997-1011. PubMed ID: 11208799 [TBL] [Abstract][Full Text] [Related]
37. Distal cleavage of 3-chlorocatechol by an extradiol dioxygenase to 3-chloro-2-hydroxymuconic semialdehyde. Riegert U; Heiss G; Fischer P; Stolz A J Bacteriol; 1998 Jun; 180(11):2849-53. PubMed ID: 9603871 [TBL] [Abstract][Full Text] [Related]
38. Structure of catechol 2,3-dioxygenase gene encoded in TOM plasmid of Pseudomonas cepacia G4. Oh JM; Kang E; Min KR; Kim CK; Kim YC; Lim JY; Lee KS; Min KH; Kim Y Biochem Biophys Res Commun; 1997 May; 234(3):578-81. PubMed ID: 9175755 [TBL] [Abstract][Full Text] [Related]
39. Degradation of diphenylether by Pseudomonas cepacia Et4: enzymatic release of phenol from 2,3-dihydroxydiphenylether. Pfeifer F; Trüper HG; Klein J; Schacht S Arch Microbiol; 1993; 159(4):323-9. PubMed ID: 7683455 [TBL] [Abstract][Full Text] [Related]
40. Pseudomonas aeruginosa 142 uses a three-component ortho-halobenzoate 1,2-dioxygenase for metabolism of 2,4-dichloro- and 2-chlorobenzoate. Romanov V; Hausinger RP J Bacteriol; 1994 Jun; 176(11):3368-74. PubMed ID: 8195093 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]