These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Common regions of deletion on chromosomes 5q, 6q, and 10q in renal cell carcinoma. Morita R; Saito S; Ishikawa J; Ogawa O; Yoshida O; Yamakawa K; Nakamura Y Cancer Res; 1991 Nov; 51(21):5817-20. PubMed ID: 1682036 [TBL] [Abstract][Full Text] [Related]
4. Specific loss of chromosomes 1, 2, 6, 10, 13, 17, and 21 in chromophobe renal cell carcinomas revealed by comparative genomic hybridization. Speicher MR; Schoell B; du Manoir S; Schröck E; Ried T; Cremer T; Störkel S; Kovacs A; Kovacs G Am J Pathol; 1994 Aug; 145(2):356-64. PubMed ID: 7519827 [TBL] [Abstract][Full Text] [Related]
5. Genomic alterations and instabilities in renal cell carcinomas and their relationship to tumor pathology. Thrash-Bingham CA; Salazar H; Freed JJ; Greenberg RE; Tartof KD Cancer Res; 1995 Dec; 55(24):6189-95. PubMed ID: 8521412 [TBL] [Abstract][Full Text] [Related]
6. Histopathological, cytogenetic, and molecular characterization of renal cortical tumors. Presti JC; Rao PH; Chen Q; Reuter VE; Li FP; Fair WR; Jhanwar SC Cancer Res; 1991 Mar; 51(5):1544-52. PubMed ID: 1671759 [TBL] [Abstract][Full Text] [Related]
7. Molecular genetic evidence for the independent origin of multifocal papillary tumors in patients with papillary renal cell carcinomas. Jones TD; Eble JN; Wang M; MacLennan GT; Delahunt B; Brunelli M; Martignoni G; Lopez-Beltran A; Bonsib SM; Ulbright TM; Zhang S; Nigro K; Cheng L Clin Cancer Res; 2005 Oct; 11(20):7226-33. PubMed ID: 16243792 [TBL] [Abstract][Full Text] [Related]
8. Development of papillary renal cell tumours is associated with loss of Y-chromosome-specific DNA sequences. Kovacs G; Tory K; Kovacs A J Pathol; 1994 May; 173(1):39-44. PubMed ID: 7931836 [TBL] [Abstract][Full Text] [Related]
9. Chromosomal abnormalities in renal cell neoplasms associated with acquired renal cystic disease. A series studied by comparative genomic hybridization and fluorescence in situ hybridization. Gronwald J; Baur AS; Holtgreve-Grez H; Jauch A; Mosimann F; Jichlinski P; Wauters JP; Cremer T; Guillou L J Pathol; 1999 Feb; 187(3):308-12. PubMed ID: 10398084 [TBL] [Abstract][Full Text] [Related]
10. Allelic losses at chromosome 17p in human renal cell carcinoma are inversely related to allelic losses at chromosome 3p. Ogawa O; Habuchi T; Kakehi Y; Koshiba M; Sugiyama T; Yoshida O Cancer Res; 1992 Apr; 52(7):1881-5. PubMed ID: 1348014 [TBL] [Abstract][Full Text] [Related]
11. Renal cell carcinoma of end-stage renal disease: an analysis of chromosome 3, 7, and 17 abnormalities by microsatellite amplification. Hughson MD; Bigler S; Dickman K; Kovacs G Mod Pathol; 1999 Mar; 12(3):301-9. PubMed ID: 10102616 [TBL] [Abstract][Full Text] [Related]
12. Fluorescent microsatellite analysis reveals duplication of specific chromosomal regions in papillary renal cell tumors. Palmedo G; Fischer J; Kovacs G Lab Invest; 1997 Dec; 77(6):633-8. PubMed ID: 9426401 [TBL] [Abstract][Full Text] [Related]
13. PCR-based RFLP screening of the commonly deleted 3p loci in renal cortical neoplasms. el-Naggar AK; Batsakis JG; Wang G; Lee MS Diagn Mol Pathol; 1993 Dec; 2(4):269-76. PubMed ID: 7906993 [TBL] [Abstract][Full Text] [Related]
14. Construction of evolutionary tree models for renal cell carcinoma from comparative genomic hybridization data. Jiang F; Desper R; Papadimitriou CH; Schäffer AA; Kallioniemi OP; Richter J; Schraml P; Sauter G; Mihatsch MJ; Moch H Cancer Res; 2000 Nov; 60(22):6503-9. PubMed ID: 11103820 [TBL] [Abstract][Full Text] [Related]
15. Molecular analysis of genetic changes in the origin and development of renal cell carcinoma. Anglard P; Tory K; Brauch H; Weiss GH; Latif F; Merino MJ; Lerman MI; Zbar B; Linehan WM Cancer Res; 1991 Feb; 51(4):1071-7. PubMed ID: 1671754 [TBL] [Abstract][Full Text] [Related]
16. Mutation of the VHL gene is associated exclusively with the development of non-papillary renal cell carcinomas. Kenck C; Wilhelm M; Bugert P; Staehler G; Kovacs G J Pathol; 1996 Jun; 179(2):157-61. PubMed ID: 8758207 [TBL] [Abstract][Full Text] [Related]
17. Lack of genetic changes at specific genomic sites separates renal oncocytomas from renal cell carcinomas. Herbers J; Schullerus D; Chudek J; Bugert P; Kanamaru H; Zeisler J; Ljungberg B; Akhtar M; Kovacs G J Pathol; 1998 Jan; 184(1):58-62. PubMed ID: 9582528 [TBL] [Abstract][Full Text] [Related]
18. Allelic losses at chromosomes 1p, 2p, 6p, 10p, 13q, 17p, and 21q significantly correlate with the chromophobe subtype of renal cell carcinoma. Schwerdtle RF; Störkel S; Neuhaus C; Brauch H; Weidt E; Brenner W; Hohenfellner R; Huber C; Decker HJ Cancer Res; 1996 Jul; 56(13):2927-30. PubMed ID: 8674042 [TBL] [Abstract][Full Text] [Related]
19. Microsatellite allelotyping differentiates chromophobe renal cell carcinomas from renal oncocytomas and identifies new genetic changes. Nagy A; Buzogany I; Kovacs G Histopathology; 2004 Jun; 44(6):542-6. PubMed ID: 15186268 [TBL] [Abstract][Full Text] [Related]
20. Renal tubulocystic carcinoma is closely related to papillary renal cell carcinoma: implications for pathologic classification. Zhou M; Yang XJ; Lopez JI; Shah RB; Hes O; Shen SS; Li R; Yang Y; Lin F; Elson P; Sercia L; Magi-Galluzzi C; Tubbs R Am J Surg Pathol; 2009 Dec; 33(12):1840-9. PubMed ID: 19898225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]