These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 1381477)
1. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant. III. Concentration and genotoxicity of mercury in the industrial effluent and contaminated water of Rushikulya estuary, India. Panda KK; Lenka M; Panda BB Mutat Res; 1992; 280(3):149-60. PubMed ID: 1381477 [TBL] [Abstract][Full Text] [Related]
2. Allium micronucleus (MNC) assay to assess bioavailability, bioconcentration and genotoxicity of mercury from solid waste deposits of a chloralkali plant, and antagonism of L-cysteine. Panda KK; Lenka M; Panda BB Sci Total Environ; 1989 Feb; 79(1):25-36. PubMed ID: 2928769 [TBL] [Abstract][Full Text] [Related]
3. Biomonitoring of low levels of mercurial derivatives in water and soil by Allium micronucleus assay. Dash S; Panda KK; Panda BB Mutat Res; 1988 Feb; 203(1):11-21. PubMed ID: 3340089 [TBL] [Abstract][Full Text] [Related]
4. Water hyacinth (Eichhornia crassipes) to biomonitor genotoxicity of low levels of mercury in aquatic environment. Panda BB; Das BL; Lenka M; Panda KK Mutat Res; 1988 Oct; 206(2):275-9. PubMed ID: 3173394 [TBL] [Abstract][Full Text] [Related]
5. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant. IV. Bioconcentration of mercury in in situ aquatic and terrestrial plants at Ganjam, India. Lenka M; Panda KK; Panda BB Arch Environ Contam Toxicol; 1992 Feb; 22(2):195-202. PubMed ID: 1536599 [TBL] [Abstract][Full Text] [Related]
6. Studies on the ability of water hyacinth (Eichhornia crassipes) to bioconcentrate and biomonitor aquatic mercury. Lenka M; Panda KK; Panda BB Environ Pollut; 1990; 66(1):89-99. PubMed ID: 15092253 [TBL] [Abstract][Full Text] [Related]
7. Isolation and characterization of mercury-resistant bacteria from sediments of Tagus Estuary (Portugal): implications for environmental and human health risk assessment. Figueiredo NL; Canário J; Duarte A; Serralheiro ML; Carvalho C J Toxicol Environ Health A; 2014; 77(1-3):155-68. PubMed ID: 24555656 [TBL] [Abstract][Full Text] [Related]
8. Genotoxicity of wastewater samples from sewage and industrial effluent detected by the Allium root anaphase aberration and micronucleus assays. Grover IS; Kaur S Mutat Res; 1999 May; 426(2):183-8. PubMed ID: 10350595 [TBL] [Abstract][Full Text] [Related]
9. Total and methyl mercury in the water, sediment, and fishes of Vembanad, a tropical backwater system in India. Ramasamy EV; Jayasooryan KK; Chandran MS; Mohan M Environ Monit Assess; 2017 Mar; 189(3):130. PubMed ID: 28243932 [TBL] [Abstract][Full Text] [Related]
10. Genotoxicity of contaminated soil and shallow well water detected by plant bioassays. Kong MS; Ma TH Mutat Res; 1999 May; 426(2):221-8. PubMed ID: 10350602 [TBL] [Abstract][Full Text] [Related]
11. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant. II Plant-availability, tissue-concentration and genotoxicity of mercury from agricultural soil contaminated with solid waste assessed in barley (Hordeum vulgare L.). Panda KK; Lenka M; Panda BB Environ Pollut; 1992; 76(1):33-42. PubMed ID: 15092006 [TBL] [Abstract][Full Text] [Related]
12. Retrospective monitoring of mercury in fish from selected European freshwater and estuary sites. Nguetseng R; Fliedner A; Knopf B; Lebreton B; Quack M; Rüdel H Chemosphere; 2015 Sep; 134():427-34. PubMed ID: 25989521 [TBL] [Abstract][Full Text] [Related]
13. Mercury cycling in surface water, pore water and sediments of Mugu Lagoon, CA, USA. Rothenberg SE; Ambrose RF; Jay JA Environ Pollut; 2008 Jul; 154(1):32-45. PubMed ID: 18342417 [TBL] [Abstract][Full Text] [Related]
14. The use of Tradescantia and Vicia faba bioassays for the in situ detection of mutagens in an aquatic environment. Grant WF; Lee HG; Logan DM; Salamone MF Mutat Res; 1992 Nov; 270(1):53-64. PubMed ID: 1383723 [TBL] [Abstract][Full Text] [Related]
15. Diagenesis and bioavailability of mercury in the contaminated sediments of Ulhas Estuary, India. Ram A; Borole DV; Rokade MA; Zingde MD Mar Pollut Bull; 2009 Nov; 58(11):1685-93. PubMed ID: 19664784 [TBL] [Abstract][Full Text] [Related]
16. Seasonal and flow-driven dynamics of particulate and dissolved mercury and methylmercury in a stream impacted by an industrial mercury source. Riscassi A; Miller C; Brooks S Environ Toxicol Chem; 2016 Jun; 35(6):1386-400. PubMed ID: 26574732 [TBL] [Abstract][Full Text] [Related]
17. Mercury in aquatic forage of large herbivores: impact of environmental conditions, assessment of health threats, and implications for transfer across ecosystem compartments. Bergman BG; Bump JK Sci Total Environ; 2014 May; 479-480():66-76. PubMed ID: 24534700 [TBL] [Abstract][Full Text] [Related]
18. Tree rings, Populus nigra L., as mercury data logger in aquatic environments: case study of an historically contaminated environment. Abreu SN; Soares AM; Nogueira AJ; Morgado F Bull Environ Contam Toxicol; 2008 Mar; 80(3):294-9. PubMed ID: 18299785 [TBL] [Abstract][Full Text] [Related]
19. Mercury contamination in the vicinity of a derelict chlor-alkali plant. Part I: sediment and water contamination of Lake Balkyldak and the River Irtysh. Ullrich SM; Ilyushchenko MA; Kamberov IM; Tanton TW Sci Total Environ; 2007 Aug; 381(1-3):1-16. PubMed ID: 17475310 [TBL] [Abstract][Full Text] [Related]
20. Assessment of mercury and methylmercury pollution with zebra mussel (Dreissena polymorpha) in the Ebro River (NE Spain) impacted by industrial hazardous dumps. Carrasco L; Díez S; Soto DX; Catalan J; Bayona JM Sci Total Environ; 2008 Dec; 407(1):178-84. PubMed ID: 18805569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]