BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 1381686)

  • 1. Perturbation of cellular energy state in complete ischemia: relationship to dissipative ion fluxes.
    Ekholm A; Asplund B; Siesjö BK
    Exp Brain Res; 1992; 90(1):47-53. PubMed ID: 1381686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of cellular energy state and ion homeostasis during recovery following brain ischemia.
    Ekholm A; Katsura K; Kristián T; Liu M; Folbergrová J; Siesjö BK
    Brain Res; 1993 Feb; 604(1-2):185-91. PubMed ID: 8457847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes of labile metabolites during anoxia in moderately hypo- and hyperthermic rats: correlation to membrane fluxes of K+.
    Katsura K; Minamisawa H; Ekholm A; Folbergrová J; Siesjö BK
    Brain Res; 1992 Sep; 590(1-2):6-12. PubMed ID: 1422848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylase alpha and labile metabolites during anoxia: correlation to membrane fluxes of K+ and Ca2+.
    Folbergrová J; Minamisawa H; Ekholm A; Siesjö BK
    J Neurochem; 1990 Nov; 55(5):1690-6. PubMed ID: 2213020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of energy failure and dissipative K+ flux during ischemia: role of preischemic plasma glucose concentration.
    Ekholm A; Katsura K; Siesjö BK
    J Cereb Blood Flow Metab; 1993 Mar; 13(2):193-200. PubMed ID: 8436610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between cytosolic [ATP], [ATP]/[ADP] and ionic fluxes in the perfused rat heart: A 31P, 23Na and 87Rb NMR study.
    Stewart LC; Deslauriers R; Kupriyanov VV
    J Mol Cell Cardiol; 1994 Oct; 26(10):1377-92. PubMed ID: 7869398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myocardial ischemic contracture. Metabolites affect rigor tension development and stiffness.
    Ventura-Clapier R; Veksler V
    Circ Res; 1994 May; 74(5):920-9. PubMed ID: 8156639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fasting enhances the effects of anoxia on ATP, Cai2+ and cell injury in isolated rat hepatocytes.
    Gasbarrini A; Borle AB; Farghali H; Caraceni P; Van Thiel D
    Biochim Biophys Acta; 1993 Jul; 1178(1):9-19. PubMed ID: 8329459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenylate energy charge, energy status, and phosphorylation state of stria vascularis under metabolic stress.
    Thalmann R; Marcus NY; Thalmann I
    Laryngoscope; 1978 Dec; 88(12):1985-8. PubMed ID: 732498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dopexamine on intestinal tissue concentrations of high-energy phosphates and intestinal release of purine compounds in endotoxemic rats.
    Schmidt H; Weigand MA; Schmidt W; Plaschke K; Martin E; Bardenheuer HJ
    Crit Care Med; 2000 Jun; 28(6):1979-84. PubMed ID: 10890651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sepsis alters skeletal muscle energetics and membrane function.
    Jacobs DO; Kobayashi T; Imagire J; Grant C; Kesselly B; Wilmore DW
    Surgery; 1991 Aug; 110(2):318-25; 325-6. PubMed ID: 1650038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversibility of mechanical and biochemical changes in smooth muscle due to anoxia and substrate depletion.
    Knull HR; Bose D
    Am J Physiol; 1975 Aug; 229(2):329-33. PubMed ID: 1163661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebral energy metabolism during hypoxia-ischemia and early recovery in immature rats.
    Yager JY; Brucklacher RM; Vannucci RC
    Am J Physiol; 1992 Mar; 262(3 Pt 2):H672-7. PubMed ID: 1558174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling among changes in energy metabolism, acid-base homeostasis, and ion fluxes in ischemia.
    Katsura K; Ekholm A; Siesjö BK
    Can J Physiol Pharmacol; 1992; 70 Suppl():S170-5. PubMed ID: 1284229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute model for the estimation of the cerebral energy state during or after hypoxia and complete or incomplete ischaemia.
    Benzi G; Dagani F; Arrigoni E
    Eur Neurol; 1978; 17 Suppl 1():87-96. PubMed ID: 753642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-dependent and Ca2+-independent glutamate release, energy status and cytosolic free Ca2+ concentration in isolated nerve terminals following metabolic inhibition: possible relevance to hypoglycaemia and anoxia.
    Kauppinen RA; McMahon HT; Nicholls DG
    Neuroscience; 1988 Oct; 27(1):175-82. PubMed ID: 2904664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain adenosine production in the rat during 60 seconds of ischemia.
    Winn HR; Rubio R; Berne RM
    Circ Res; 1979 Oct; 45(4):486-92. PubMed ID: 476871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of the cytosolic-mitochondrial distribution of high-energy phosphates during global myocardial ischemia may contribute to early contractile failure.
    Rauch U; Schulze K; Witzenbichler B; Schultheiss HP
    Circ Res; 1994 Oct; 75(4):760-9. PubMed ID: 7923621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fish muscle energy metabolism measured during hypoxia and recovery: an in vivo 31P-NMR study.
    van Ginneken V; van den Thillart G; Addink A; Erkelens C
    Am J Physiol; 1995 May; 268(5 Pt 2):R1178-87. PubMed ID: 7771577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.