BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 1381732)

  • 1. Identification and analysis of the gap region in the 23S ribosomal RNA from Actinobacillus actinomycetemcomitans.
    Haraszthy VI; Sunday GJ; Bobek LA; Motley TS; Preus H; Zambon JJ
    J Dent Res; 1992 Sep; 71(9):1561-8. PubMed ID: 1381732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid identification of Actinobacillus actinomycetemcomitans based on analysis of 23S ribosomal RNA.
    Preus HR; Sunday GJ; Haraszthy VI; Zambon JJ
    Oral Microbiol Immunol; 1992 Dec; 7(6):372-5. PubMed ID: 1284398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of DNA encoding 23S rRNA and 16S-23S rRNA intergenic spacer regions from Plesiomonas shigelloides.
    East AK; Allaway D; Collins MD
    FEMS Microbiol Lett; 1992 Aug; 74(1):57-62. PubMed ID: 1381325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain identification of Actinobacillus actinomycetemcomitans using the polymerase chain reaction.
    Griffen AL; Leys EJ; Fuerst PA
    Oral Microbiol Immunol; 1992 Aug; 7(4):240-3. PubMed ID: 1408359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic relationship of strains of Haemophilus aphrophilus, H. paraphrophilus, and Actinobacillus actinomycetemcomitans studied by ribotyping.
    Sedlácek I; Gerner-Smidt P; Schmidt J; Frederiksen W
    Zentralbl Bakteriol; 1993 Jun; 279(1):51-9. PubMed ID: 7690272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex PCR using conserved and species-specific 16S rRNA gene primers for simultaneous detection of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis.
    Tran SD; Rudney JD
    J Clin Microbiol; 1996 Nov; 34(11):2674-8. PubMed ID: 8897163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and strain identification of Actinobacillus actinomycetemcomitans by nested PCR.
    Leys EJ; Griffen AL; Strong SJ; Fuerst PA
    J Clin Microbiol; 1994 May; 32(5):1288-94. PubMed ID: 8051258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of partial 23S rDNA sequences from Rhizobium species.
    Tesfaye M; Peterson DJ; Holl FB
    Can J Microbiol; 1997 Jun; 43(6):526-33. PubMed ID: 9226872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of an intervening sequence within the 23S ribosomal RNA genes of Campylobacter jejuni.
    Konkel ME; Marconi RT; Mead DJ; Cieplak W
    Mol Microbiol; 1994 Oct; 14(2):235-41. PubMed ID: 7530317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of intervening sequences in 23S rRNA genes and 23S rRNA fragmentation in Taylorella equigenitalis.
    Tazumi A; Sekizuka T; Moore JE; Millar BC; Taneike I; Matsuda M
    Folia Microbiol (Praha); 2008; 53(6):486-92. PubMed ID: 19381472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of the absence of intervening sequences within 23S rRNA genes from Campylobacter lari.
    Tazumi A; Kakinuma Y; Moore JE; Millar CB; Taneike I; Matsuda M
    J Basic Microbiol; 2009 Aug; 49(4):386-94. PubMed ID: 19322838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequences around the fragmentation sites of the large subunit ribosomal RNA in the family Rhizobiaceae. 23S-like rRNAs in Rhizobiaceae.
    Selenska-Pobell S; Döring H
    Antonie Van Leeuwenhoek; 1998 Jan; 73(1):55-67. PubMed ID: 9602279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes.
    Roller C; Ludwig W; Schleifer KH
    J Gen Microbiol; 1992 Jun; 138(6):1167-75. PubMed ID: 1326592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Actinobacillus actinomycetemcomitans: polymerase chain reaction amplification of lktA-specific sequences.
    Goncharoff P; Figurski DH; Stevens RH; Fine DH
    Oral Microbiol Immunol; 1993 Apr; 8(2):105-10. PubMed ID: 8355983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific primer for AP-PCR identification of Actinobacillus actinomycetemcomitans.
    Avila-Campos MJ; Sacchi CT; Whitney AM; Steigerwalt AG; Mayer LW
    J Clin Periodontol; 1999 Nov; 26(11):699-704. PubMed ID: 10589804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ribosomal intergenic spacer and domain I of the 23S rRNA gene are phylogenetic markers for Chlamydia spp.
    Everett KD; Andersen AA
    Int J Syst Bacteriol; 1997 Apr; 47(2):461-73. PubMed ID: 9103637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic and molecular characterization of a 23S rRNA gene positions the genus Campylobacter in the epsilon subdivision of the Proteobacteria and shows that the presence of transcribed spacers is common in Campylobacter spp.
    Trust TJ; Logan SM; Gustafson CE; Romaniuk PJ; Kim NW; Chan VL; Ragan MA; Guerry P; Gutell RR
    J Bacteriol; 1994 Aug; 176(15):4597-609. PubMed ID: 8045890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single rRNA gene region in Bradyrhizobium japonicum.
    Kündig C; Beck C; Hennecke H; Göttfert M
    J Bacteriol; 1995 Sep; 177(17):5151-4. PubMed ID: 7665496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atypical structure of the 23S ribosomal RNA molecule in certain oral bacteria.
    Sunday GJ; Gillespie MJ; Motley ST; Zambon JJ
    J Dent Res; 1991 Jun; 70(6):961-5. PubMed ID: 1710629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of gene probes for the specific identification of Streptococcus uberis and Streptococcus parauberis based upon large subunit rRNA gene sequences.
    Harland NM; Leigh JA; Collins MD
    J Appl Bacteriol; 1993 May; 74(5):526-31. PubMed ID: 7683638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.