These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 13818462)

  • 1. Production of pentose intermediates during growth of Nocardia opaca and other saprophytic soil nocardias and mycobacteria.
    DUFF RB; WEBLEY DM
    Biochim Biophys Acta; 1959 Aug; 34():398-406. PubMed ID: 13818462
    [No Abstract]   [Full Text] [Related]  

  • 2. Evidence for the pentose cycle in Nocardia corallina.
    Brown O; Clark JB
    Proc Soc Exp Biol Med; 1966 Jul; 122(3):887-90. PubMed ID: 4380627
    [No Abstract]   [Full Text] [Related]  

  • 3. A genetic approach to the biosynthesis of the rifamycin-chromophore in Nocardia mediterranei. I. Isolation and characterization of a pentose-excreting auxotrophic mutant of Nocardia mediterranei with drastically reduced rifamycin production.
    Ghisalba O; NĂ¼esch J
    J Antibiot (Tokyo); 1978 Mar; 31(3):202-14. PubMed ID: 649515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Preliminary studies on the numerical classification of mycobacteria and nocardias. I. Taxonomic relations between Mycobacterium rhodocrous, Mycobacterium pellegrino, and the genera Mycobacterium and Nocardia].
    Tacquet A; Plancot MT; Debruyne J; Devulder B; Joseph M; Losfeld J
    Ann Inst Pasteur Lille; 1971; 22():121-35. PubMed ID: 5161996
    [No Abstract]   [Full Text] [Related]  

  • 5. The influence of chemical structure on beta-oxidation by soil nocardias.
    WEBLEY DM; DUFF RB; FARMER VC
    J Gen Microbiol; 1958 Jun; 18(3):733-46. PubMed ID: 13549704
    [No Abstract]   [Full Text] [Related]  

  • 6. Use of a siderophore detection medium, ethylene glycol degradation, and beta-galactosidase activity in the early presumptive differentiation of Nocardia, Rhodococcus, Streptomyces, and rapidly growing Mycobacterium species.
    Fiss E; Brooks GF
    J Clin Microbiol; 1991 Jul; 29(7):1533-5. PubMed ID: 1832172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catabolic pathways of coryneforms, nocardias, and mycobacteria.
    Krulwich TA; Pelliccione NJ
    Annu Rev Microbiol; 1979; 33():95-111. PubMed ID: 227323
    [No Abstract]   [Full Text] [Related]  

  • 8. The formation of sedoheptulose phosphate.
    HORECKER BL; SMYRNIOTIS PZ; KLENOW H
    J Biol Chem; 1953 Dec; 205(2):661-82. PubMed ID: 13129245
    [No Abstract]   [Full Text] [Related]  

  • 9. [Pentose cycle in carbohydrates in Mycobacterium phlei].
    HELLER J; SZAFRANSKI P
    Acta Biochim Pol; 1955; 2(4):435-42. PubMed ID: 13338984
    [No Abstract]   [Full Text] [Related]  

  • 10. Glucose metabolism by mycobacterium Smegmatis. Evidence for the pentose cycle.
    NOBLE RE; KOCH-WESER D; NOBLE EP
    Am Rev Respir Dis; 1962 Sep; 86():391-4. PubMed ID: 14480158
    [No Abstract]   [Full Text] [Related]  

  • 11. Beta-oxidation of fatty acids by Nocardia opaca.
    WEBLEY DM; DUFF RB; FARMER VC
    J Gen Microbiol; 1955 Oct; 13(2):361-9. PubMed ID: 13278485
    [No Abstract]   [Full Text] [Related]  

  • 12. The metabolism of some saturated aliphatic hydrocarbons, alcohols and fatty acids by Proactinomyces opacus Jensen (Nocardia opaca Waksman & Hendrik).
    WEBLEY DM; DE KOCK PC
    Biochem J; 1952 Jun; 51(3):371-5. PubMed ID: 12977738
    [No Abstract]   [Full Text] [Related]  

  • 13. [Difference of uptake of 2,6-diamino (G-3H) pimelic acid dihydrochloride among Mycobacterium, Rhodococcus, and Nocardia (author's transl)].
    Tsukamura M; Mizuno S; Murata H
    Kekkaku; 1980 Feb; 55(2):53-6. PubMed ID: 7373966
    [No Abstract]   [Full Text] [Related]  

  • 14. [Differentiation among Mycobacterium, Rhodococcus (Gordona) and Nocardia by thin-layer chromatography after incubation with acetate-1-14C (author's transl)].
    Tsukamura M; Mizuno S
    Kekkaku; 1979 Apr; 54(4):243-7. PubMed ID: 470298
    [No Abstract]   [Full Text] [Related]  

  • 15. Differentiation between the genera Mycobacterium, Rhodococcus and Nocardia by susceptibility to 5-fluorouracil.
    Tsukamura M
    J Gen Microbiol; 1981 Jul; 125(1):205-8. PubMed ID: 7038035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The metabolism of iron-, zinc- and manganese-deficient Nocardia opaca.
    WEBLEY DM; DUFF RB; ANDERSON G
    J Gen Microbiol; 1962 Sep; 29():179-87. PubMed ID: 14005472
    [No Abstract]   [Full Text] [Related]  

  • 17. Metabolism of silicon as a probable pathogenicity factor for Mycobacterium & Nocardia spp.
    Das S; Mandal S; Chakrabarty AN; Dastidar SG
    Indian J Med Res; 1992 Mar; 95():59-65. PubMed ID: 1601470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of substitution in the side-chain on beta-oxidation of aryloxy-alkylcarboxylic acids by Nocardia opaca.
    WEBLEY DM; DUFF RB; FARMER VC
    Nature; 1959 Mar; 183(4663):748-9. PubMed ID: 13644179
    [No Abstract]   [Full Text] [Related]  

  • 19. Contribution to the classification of mycobacteria and nocardias.
    Juhlin I
    Acta Pathol Microbiol Scand; 1967; 70():Suppl 189:1+. PubMed ID: 5588637
    [No Abstract]   [Full Text] [Related]  

  • 20. [Destruction of oil in the presence of Cu2+ and surfactants of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017 and Nocardia vaccinii IMV B-7405].
    Pirog TP; Konon AD; Sofilkanich AP; Shevchuk TA; Iutinska GO
    Mikrobiol Z; 2015; 77(2):2-8. PubMed ID: 26036026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.