These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 1382316)
1. Regulation by ATP and ADP of CFTR chloride channels that contain mutant nucleotide-binding domains. Anderson MP; Welsh MJ Science; 1992 Sep; 257(5077):1701-4. PubMed ID: 1382316 [TBL] [Abstract][Full Text] [Related]
2. The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. Carson MR; Travis SM; Welsh MJ J Biol Chem; 1995 Jan; 270(4):1711-7. PubMed ID: 7530246 [TBL] [Abstract][Full Text] [Related]
4. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics. Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475 [TBL] [Abstract][Full Text] [Related]
5. Converting nonhydrolyzable nucleotides to strong cystic fibrosis transmembrane conductance regulator (CFTR) agonists by gain of function (GOF) mutations. Okeyo G; Wang W; Wei S; Kirk KL J Biol Chem; 2013 Jun; 288(24):17122-33. PubMed ID: 23620589 [TBL] [Abstract][Full Text] [Related]
6. Dual effects of ADP and adenylylimidodiphosphate on CFTR channel kinetics show binding to two different nucleotide binding sites. Weinreich F; Riordan JR; Nagel G J Gen Physiol; 1999 Jul; 114(1):55-70. PubMed ID: 10398692 [TBL] [Abstract][Full Text] [Related]
7. G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects. Bompadre SG; Sohma Y; Li M; Hwang TC J Gen Physiol; 2007 Apr; 129(4):285-98. PubMed ID: 17353351 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog. Bompadre SG; Li M; Hwang TC J Biol Chem; 2008 Feb; 283(9):5364-9. PubMed ID: 18167357 [TBL] [Abstract][Full Text] [Related]
9. Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains. Wang W; Bernard K; Li G; Kirk KL J Biol Chem; 2007 Feb; 282(7):4533-4544. PubMed ID: 17178710 [TBL] [Abstract][Full Text] [Related]
10. The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR. Jih KY; Li M; Hwang TC; Bompadre SG J Physiol; 2011 Jun; 589(Pt 11):2719-31. PubMed ID: 21486785 [TBL] [Abstract][Full Text] [Related]
11. Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme. Zeltwanger S; Wang F; Wang GT; Gillis KD; Hwang TC J Gen Physiol; 1999 Apr; 113(4):541-54. PubMed ID: 10102935 [TBL] [Abstract][Full Text] [Related]
12. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia. Dong Q; Ernst SE; Ostedgaard LS; Shah VS; Ver Heul AR; Welsh MJ; Randak CO J Biol Chem; 2015 May; 290(22):14140-53. PubMed ID: 25887396 [TBL] [Abstract][Full Text] [Related]
13. Functional analysis of the C-terminal boundary of the second nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator and structural implications. Gentzsch M; Aleksandrov A; Aleksandrov L; Riordan JR Biochem J; 2002 Sep; 366(Pt 2):541-8. PubMed ID: 12020354 [TBL] [Abstract][Full Text] [Related]
14. Maturation and function of cystic fibrosis transmembrane conductance regulator variants bearing mutations in putative nucleotide-binding domains 1 and 2. Gregory RJ; Rich DP; Cheng SH; Souza DW; Paul S; Manavalan P; Anderson MP; Welsh MJ; Smith AE Mol Cell Biol; 1991 Aug; 11(8):3886-93. PubMed ID: 1712898 [TBL] [Abstract][Full Text] [Related]
15. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating. Basso C; Vergani P; Nairn AC; Gadsby DC J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393 [TBL] [Abstract][Full Text] [Related]
16. Nucleoside triphosphates are required to open the CFTR chloride channel. Anderson MP; Berger HA; Rich DP; Gregory RJ; Smith AE; Welsh MJ Cell; 1991 Nov; 67(4):775-84. PubMed ID: 1718606 [TBL] [Abstract][Full Text] [Related]
17. Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator. Aleksandrov L; Mengos A; Chang X; Aleksandrov A; Riordan JR J Biol Chem; 2001 Apr; 276(16):12918-23. PubMed ID: 11279083 [TBL] [Abstract][Full Text] [Related]
18. The First Nucleotide Binding Domain of Cystic Fibrosis Transmembrane Conductance Regulator Is a Site of Stable Nucleotide Interaction, whereas the Second Is a Site of Rapid Turnover. Aleksandrov L; Aleksandrov AA; Chang XB; Riordan JR J Biol Chem; 2002 May; 277(18):15419-25. PubMed ID: 11861646 [TBL] [Abstract][Full Text] [Related]
19. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain. Csanády L; Chan KW; Nairn AC; Gadsby DC J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536 [TBL] [Abstract][Full Text] [Related]
20. Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis. Bompadre SG; Hwang TC Sheng Li Xue Bao; 2007 Aug; 59(4):431-42. PubMed ID: 17700963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]