BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1382359)

  • 21. Guanine nucleotide binding proteins and the regulation of cyclic AMP synthesis in NS20Y neuroblastoma cells: role of D1 dopamine and muscarinic receptors.
    Lovenberg TW; Nichols DE; Nestler EJ; Roth RH; Mailman RB
    Brain Res; 1991 Aug; 556(1):101-7. PubMed ID: 1682005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction.
    Youn JH; Gulve EA; Holloszy JO
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C555-61. PubMed ID: 2003578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of sarcoplasmic reticulum in relaxation of mouse muscle; effects of 2,5-di(tert-butyl)-1,4-benzohydroquinone.
    Westerblad H; Allen DG
    J Physiol; 1994 Jan; 474(2):291-301. PubMed ID: 8006816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of high-conductance anion channels by G proteins and 5-HT1A receptors in CHO cells.
    Mangel AW; Raymond JR; Fitz JG
    Am J Physiol; 1993 Mar; 264(3 Pt 2):F490-5. PubMed ID: 7681262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Release of Ca2+ ions from the sarcoplasmic reticulum of skeletal muscles after treatment with caffeine].
    Men'shikova EV; Ritov VB
    Biokhimiia; 1986 Apr; 51(4):603-11. PubMed ID: 2423142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ca2+-activated ryanodine binding: mechanisms of sensitivity and intensity modulation by Mg2+, caffeine, and adenine nucleotides.
    Pessah IN; Stambuk RA; Casida JE
    Mol Pharmacol; 1987 Mar; 31(3):232-8. PubMed ID: 2436032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The rate of calcium uptake into sarcoplasmic reticulum of cardiac muscle and skeletal muscle. Effects of cyclic AMP-dependent protein kinase and phosphorylase b kinase.
    Schwartz A; Entman ML; Kaniike K; Lane LK; Van Winkle WB; Bornet EP
    Biochim Biophys Acta; 1976 Feb; 426(1):57-72. PubMed ID: 2325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of the effects of pancuronium and tubocurarine on different muscles of young and old mice.
    Kelly SS; Gertler RA; Robbins N
    Br J Anaesth; 1986 Aug; 58(8):909-14. PubMed ID: 3015178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anthraquinone-sensitized Ca2+ release channel from rat cardiac sarcoplasmic reticulum: possible receptor-mediated mechanism of doxorubicin cardiomyopathy.
    Pessah IN; Durie EL; Schiedt MJ; Zimanyi I
    Mol Pharmacol; 1990 Apr; 37(4):503-14. PubMed ID: 2157959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A guanine nucleotide-binding protein mediates 1,25-dihydroxy-vitamin D-3-dependent rapid stimulation of Ca2+ uptake in skeletal muscle.
    De Boland AR; Flawia M; Coso O; Boland R
    Biochim Biophys Acta; 1991 Sep; 1094(2):238-42. PubMed ID: 1654121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast release of 45Ca2+ induced by inositol 1,4,5-trisphosphate and Ca2+ in the sarcoplasmic reticulum of rabbit skeletal muscle: evidence for two types of Ca2+ release channels.
    Valdivia C; Vaughan D; Potter BV; Coronado R
    Biophys J; 1992 May; 61(5):1184-93. PubMed ID: 1318092
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diminished effect of cAMP on Ca2+ accumulation in skinned fibers of hypertrophied rat heart.
    Tomita F; Bassett AL; Myerburg RJ; Kimura S
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H749-56. PubMed ID: 8141376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Importance of calcium ions and impulse activity for neurotrophic control of the membrane potential of muscle fibers in the rat].
    Urazaev AKh; Chikin AV; Volkov EM; Poletaev GI; Khamitov KhS
    Neirofiziologiia; 1987; 19(4):449-56. PubMed ID: 2443859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitroglycerin and the neuromuscular blockade produced by gallamine, succinylcholine, d-tubocurarine, and pancuronium.
    Glisson SN; Sanchez MM; El-Etr AA; Lim RA
    Anesth Analg; 1980 Feb; 59(2):117-22. PubMed ID: 6768318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of calcium and potassium with neuromuscular blocking agents.
    Waud BE; Waud DR
    Br J Anaesth; 1980 Sep; 52(9):863-6. PubMed ID: 7437224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of calcium release from sarcoplasmic reticulum of skeletal muscle by calmodulin.
    Plank B; Wyskovsky W; Suko J
    Prog Clin Biol Res; 1988; 252():155-9. PubMed ID: 2450361
    [No Abstract]   [Full Text] [Related]  

  • 37. Alterations in the functional properties of skinned fibers from denervated rabbit skeletal muscle.
    Trachez MM; Sudo RT; Suarez-Kurtz G
    Am J Physiol; 1990 Sep; 259(3 Pt 1):C503-6. PubMed ID: 2399970
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosynthesis of paf-acether in cultured-mouse mast cells: the role of calcium and G proteins.
    Joly F; Beauvais F; Ninio E
    Biochem Biophys Res Commun; 1992 May; 184(3):1425-31. PubMed ID: 1317174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cholera toxin-sensitive 3',5'-cyclic adenosine monophosphate and calcium signals of the human dopamine-D1 receptor: selective potentiation by protein kinase A.
    Liu YF; Civelli O; Zhou QY; Albert PR
    Mol Endocrinol; 1992 Nov; 6(11):1815-24. PubMed ID: 1282671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ca2+-activated potassium conductance in metabolically exhausted skeletal muscle fibres.
    Lüttgau HC; Wettwer E
    Cell Calcium; 1983 Dec; 4(5-6):331-41. PubMed ID: 6322999
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.