These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 13824050)

  • 1. Diphenylenedioxide-2, 3-quinone: an intermediate in the enzymic oxidation of catechol.
    FORSYTH WG; QUESNEL VC; ROBERTS JB
    Biochim Biophys Acta; 1960 Jan; 37():322-6. PubMed ID: 13824050
    [No Abstract]   [Full Text] [Related]  

  • 2. ENZYMIC OXIDATION OF CATECHOL TO DIPHENYLENEDIOXIDE-2,3-QUINONE.
    NAIR PM; VINING LC
    Arch Biochem Biophys; 1964 Jul; 106():422-7. PubMed ID: 14217190
    [No Abstract]   [Full Text] [Related]  

  • 3. Oxidation of catechol in plants. II. Enzymic conversion of catechol to diphenylenedioxide 2,3-quinone in the leaves of Tecoma stans L.
    Kandaswami C; Vaidyanathan CS
    Indian J Biochem Biophys; 1973 Mar; 10(1):23-6. PubMed ID: 4204898
    [No Abstract]   [Full Text] [Related]  

  • 4. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol.
    Sugumaran M; Bolton J
    Biochem Biophys Res Commun; 1995 Aug; 213(2):469-74. PubMed ID: 7646501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chromogenic assay for catecholoxidases based on the addition of L-proline to quinones.
    Rzepecki LM; Waite JH
    Anal Biochem; 1989 Jun; 179(2):375-81. PubMed ID: 2774185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The participation of a quinone in the enzymic reduction of glycine by Clostridium sticklandii.
    STADTMAN TC
    Biochem Z; 1958; 331(1):46-8. PubMed ID: 13628592
    [No Abstract]   [Full Text] [Related]  

  • 7. Semiquinone anion radicals from addition of amino acids, peptides, and proteins to quinones derived from oxidation of catechols and catecholamines. An ESR spin stabilization study.
    Kalyanaraman B; Premovic PI; Sealy RC
    J Biol Chem; 1987 Aug; 262(23):11080-7. PubMed ID: 3038907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of dihydrothiamine by quinone derivatives.
    MITSUDA H; HASHITANI Y; KAWAI F
    J Vitaminol (Kyoto); 1961 Dec; 7():256-64. PubMed ID: 14474707
    [No Abstract]   [Full Text] [Related]  

  • 9. Radical-pair energetics and decay mechanisms in reaction centers containing anthraquinones, naphthoquinones or benzoquinones in place of ubiquinone.
    Woodbury NW; Parson WW; Gunner MR; Prince RC; Dutton PL
    Biochim Biophys Acta; 1986 Aug; 851(1):6-22. PubMed ID: 3524681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiquinone anion radicals of catechol(amine)s, catechol estrogens, and their metal ion complexes.
    Kalyanaraman B; Felix CC; Sealy RC
    Environ Health Perspect; 1985 Dec; 64():185-98. PubMed ID: 3007089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioreductive activation of catechol estrogen-ortho-quinones: aromatization of the B ring in 4-hydroxyequilenin markedly alters quinoid formation and reactivity.
    Shen L; Pisha E; Huang Z; Pezzuto JM; Krol E; Alam Z; van Breemen RB; Bolton JL
    Carcinogenesis; 1997 May; 18(5):1093-101. PubMed ID: 9163701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADH oxidation by quinone electron acceptors.
    Cénas NK; Kanapieniené JJ; Kulys JJ
    Biochim Biophys Acta; 1984 Oct; 767(1):108-12. PubMed ID: 6487613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The quantum efficiency of the photochemical reduction of quinone and ferricyanide by lyophilized and whole Chlorella cells.
    SCHWARTZ M
    Arch Biochem Biophys; 1955 Nov; 59(1):5-16. PubMed ID: 13269151
    [No Abstract]   [Full Text] [Related]  

  • 14. A dopaquinone model that mimics the water addition step of cofactor biogenesis in copper amine oxidases.
    Ling KQ; Sayre LM
    J Am Chem Soc; 2005 Apr; 127(13):4777-84. PubMed ID: 15796543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome P450 isoforms catalyze formation of catechol estrogen quinones that react with DNA.
    Zhang Y; Gaikwad NW; Olson K; Zahid M; Cavalieri EL; Rogan EG
    Metabolism; 2007 Jul; 56(7):887-94. PubMed ID: 17570247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [On fermentation and quinone in cell metabolism].
    KIESOW L
    Z Naturforsch B; 1960 Mar; 15B():174-9. PubMed ID: 13853379
    [No Abstract]   [Full Text] [Related]  

  • 17. A rapid and sensitive micro-assay to determine the capacity of quinones to undergo redox cycling.
    Hart LA; van der Wal NA; Koster AS; Labadie RP
    Toxicol Lett; 1989 Aug; 48(2):151-7. PubMed ID: 2772921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p-Quinone methides are the major decomposition products of catechol estrogen o-quinones.
    Bolton JL; Shen L
    Carcinogenesis; 1996 May; 17(5):925-9. PubMed ID: 8640939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [On orthophosphoric acid and carbon dioxide in quinone catalysis in the living cell].
    KIESOW L
    Z Naturforsch B; 1960 May; 15B():293-7. PubMed ID: 13853381
    [No Abstract]   [Full Text] [Related]  

  • 20. The photochemical reduction of quinone and ferricyanide by lyophilized Chlorella cells.
    SCHWARTZ M
    Biochim Biophys Acta; 1956 Dec; 22(3):463-70. PubMed ID: 13382875
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.