These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 1382809)

  • 1. Effect of neurotransmitters on axoplasmic transport: acetylcholine effect on superior cervical ganglion cells.
    Takenaka T; Kawakami T; Hikawa N; Bandou Y; Gotoh H
    Brain Res; 1992 Aug; 588(2):212-6. PubMed ID: 1382809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Neurotransmitter-mediated regulatory mechanisms of axoplasmic transport--acetylcholine and adrenaline].
    Kawakami T
    Rinsho Shinkeigaku; 1997 Dec; 37(12):1105-6. PubMed ID: 9577658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How neurotransmitters affect axoplasmic transport?
    Takenaka T; Kawakami T; Bandou Y; Hikawa N; Gotoh H
    Jpn J Physiol; 1993; 43 Suppl 1():S205-7. PubMed ID: 7505856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal transduction mechanism responsible for changes in axoplasmic transport caused by neurotransmitters.
    Takenaka T; Kawakami T
    Neurochem Res; 1996 May; 21(5):553-6. PubMed ID: 8726962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylcholine elicits metabolically mediated M2-muscarinic hyperpolarization in isolated rabbit sympathetic neurons.
    Mochida S
    Jpn J Physiol; 1990; 40(2):189-204. PubMed ID: 2395236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different GTP-binding proteins mediate regulation of calcium channels by acetylcholine and noradrenaline in rat sympathetic neurons.
    Song SY; Saito K; Noguchi K; Konishi S
    Brain Res; 1989 Aug; 494(2):383-6. PubMed ID: 2550109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of neurotransmitters on axoplasmic transport: how adrenaline affects superior cervical ganglion cells.
    Takenaka T; Kawakami T; Hori H; Bandou Y
    Brain Res; 1994 Apr; 643(1-2):81-5. PubMed ID: 7518334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adrenergic and cholinergic inhibition of Ca2+ channels mediated by different GTP-binding proteins in rat sympathetic neurones.
    Song SY; Saito K; Noguchi K; Konishi S
    Pflugers Arch; 1991 Jul; 418(6):592-600. PubMed ID: 1658727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperpolarizing muscarinic responses of freshly dissociated rat hippocampal CA1 neurones.
    Wakamori M; Hidaka H; Akaike N
    J Physiol; 1993 Apr; 463():585-604. PubMed ID: 7504109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of acetylcholine and adrenaline on axoplasmic transport at different regions of mouse superior cervical ganglion cells in culture.
    Kawakami T; Takenaka T; Hori H; Hashimoto Y; Kusakabe T
    Brain Res; 1995 Jun; 683(1):88-92. PubMed ID: 7552348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of inhibitory action of capsaicin on particulate axoplasmic transport in sensory neurons in culture.
    Kawakami T; Hikawa N; Kusakabe T; Kano M; Bandou Y; Gotoh H; Takenaka T
    J Neurobiol; 1993 May; 24(5):545-51. PubMed ID: 7686960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of pertussis toxin on the muscarinic regulation of Ca2+ and K+ currents in frog cardiac myocytes.
    Li Y; Hanf R; Otero AS; Fischmeister R; Szabo G
    J Gen Physiol; 1994 Nov; 104(5):941-59. PubMed ID: 7876829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of basal and agonist-induced activation of the G protein-gated muscarinic K+ channel in atrial myocytes of guinea pig heart.
    Ito H; Sugimoto T; Kobayashi I; Takahashi K; Katada T; Ui M; Kurachi Y
    J Gen Physiol; 1991 Sep; 98(3):517-33. PubMed ID: 1684806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel action of collapsin: collapsin-1 increases antero- and retrograde axoplasmic transport independently of growth cone collapse.
    Goshima Y; Kawakami T; Hori H; Sugiyama Y; Takasawa S; Hashimoto Y; Kagoshima-Maezono M; Takenaka T; Misu Y; Strittmatter SM
    J Neurobiol; 1997 Sep; 33(3):316-28. PubMed ID: 9298768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of a muscarinic receptor selectively inhibits a rapidly inactivated Ca2+ current in rat sympathetic neurons.
    Wanke E; Ferroni A; Malgaroli A; Ambrosini A; Pozzan T; Meldolesi J
    Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4313-7. PubMed ID: 2438697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of glucagon on axoplasmic transport in mouse superior cervical ganglion cells.
    Tao Y; Hori H; Kawakami T; Hashimoto Y; Takenaka T; Ishikawa Y
    Neuroreport; 1999 Aug; 10(11):2401-4. PubMed ID: 10439471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dibutyryl cyclic AMP on axoplasmic transport in the hippocampus.
    Hashimoto Y; Hori H; Kawakami T; Kusakabe T; Takenaka T
    Brain Res; 1997 May; 755(2):343-6. PubMed ID: 9175904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GTP-binding proteins mediate acetylcholine inhibition of voltage dependent calcium channels in hippocampal neurons.
    Toselli M; Lux HD
    Pflugers Arch; 1989 Jan; 413(3):319-21. PubMed ID: 2541406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. M4 muscarinic receptor activation modulates calcium channel currents in rat intracardiac neurons.
    Cuevas J; Adams DJ
    J Neurophysiol; 1997 Oct; 78(4):1903-12. PubMed ID: 9325359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. M2 muscarinic receptor-mediated inhibition of the Ca2+ current in rat magnocellular cholinergic basal forebrain neurones.
    Allen TG; Brown DA
    J Physiol; 1993 Jul; 466():173-89. PubMed ID: 8410690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.