These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 1382875)

  • 1. Transfer of exogenous macromolecules from rat stomach wall to blood and lymph is dependent on molecular weight.
    Yoshikawa H; Takada K; Muranishi S
    Chem Pharm Bull (Tokyo); 1992 May; 40(5):1277-9. PubMed ID: 1382875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular weight-dependent lymphatic transfer of exogenous macromolecules from large intestine of renal insufficiency rats.
    Yoshikawa H; Takada K; Muranishi S
    Pharm Res; 1992 Sep; 9(9):1195-8. PubMed ID: 1384029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular weight dependence of permselectivity to rat small intestinal blood-lymph barrier for exogenous macromolecules absorbed from lumen.
    Yoshikawa H; Takada K; Muranishi S
    J Pharmacobiodyn; 1984 Jan; 7(1):1-6. PubMed ID: 6202865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular weight-dependent lymphatic transfer of fluorescein isothiocyanate-labeled dextrans after intrapulmonary administration and effects of various absorption enhancers on the lymphatic transfer of drugs in rats.
    Hanatani K; Takada K; Yoshida N; Nakasuji M; Morishita Y; Yasako K; Fujita T; Yamamoto A; Muranishi S
    J Drug Target; 1995; 3(4):263-71. PubMed ID: 8821000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small Intestinal Permeability and Gut-Transit Time Determined with Low and High Molecular Weight Fluorescein Isothiocyanate-Dextrans in C3H Mice.
    Woting A; Blaut M
    Nutrients; 2018 May; 10(6):. PubMed ID: 29843428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective permeability of hydrophilic substances through walls of lymph vessels: roles of endothelial barrier.
    Ono N; Mizuno R; Ohhashi T
    Am J Physiol Heart Circ Physiol; 2005 Oct; 289(4):H1676-82. PubMed ID: 15964919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in gastric mucosal permeability induced by haemorrhagic shock in the anaesthetized rat: modulation by acid.
    Calatayud S; Barrachina MD; García-Zaragoza E; Mattsson H; Esplugues JV
    J Pharm Pharmacol; 1998 Oct; 50(10):1095-100. PubMed ID: 9821654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs.
    Sakane T; Akizuki M; Taki Y; Yamashita S; Sezaki H; Nadai T
    J Pharm Pharmacol; 1995 May; 47(5):379-81. PubMed ID: 7494186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Di-iodo-L-tyrosine-labelled dextrans as molecular size markers of nasal absorption in the rat.
    Fisher AN; Illum L; Davis SS; Schacht EH
    J Pharm Pharmacol; 1992 Jul; 44(7):550-4. PubMed ID: 1383490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular charge influences transperitoneal macromolecule transport.
    Leypoldt JK; Henderson LW
    Kidney Int; 1993 Apr; 43(4):837-44. PubMed ID: 7683067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of the permeability of rat stomach to larger molecules. Influence of lysophosphatidylcholine.
    Karlqvist PA; Franzén L; Sjödahl R; Tagesson C
    Acta Chir Scand; 1986 Apr; 152():279-84. PubMed ID: 2426889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of transarterial transport of various dextrans with their physicochemical properties.
    Elmalak O; Lovich MA; Edelman E
    Biomaterials; 2000 Nov; 21(22):2263-72. PubMed ID: 11026632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The uptake of fluorescein-conjugated dextran 70,000 by the small intestinal epithelium of the young rat and pig in relation to macromolecular transmission into the blood.
    Ekström GM; Weström BR; Telemo E; Karlsson BW
    J Dev Physiol; 1988 Jun; 10(3):227-33. PubMed ID: 2464019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partitioning of the aqueous outflow in rat eyes.
    Lindsey JD; Hofer A; Wright KN; Weinreb RN
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5754-8. PubMed ID: 19797235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional small-intestinal permeability in vitro to different-sized dextrans and proteins in the rat.
    Pantzar N; Weström BR; Luts A; Lundin S
    Scand J Gastroenterol; 1993 Mar; 28(3):205-11. PubMed ID: 7680488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exchange of macromolecules between peritoneal cavity and plasma.
    Flessner MF; Dedrick RL; Schultz JS
    Am J Physiol; 1985 Jan; 248(1 Pt 2):H15-25. PubMed ID: 2578740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion of macromolecules through sclera.
    Miao H; Wu BD; Tao Y; Li XX
    Acta Ophthalmol; 2013 Feb; 91(1):e1-6. PubMed ID: 22998133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of intestinal absorption of water-soluble macromolecules by various polyamines: intestinal mucosal toxicity and absorption-enhancing mechanism of spermine.
    Gao Y; He L; Katsumi H; Sakane T; Fujita T; Yamamoto A
    Int J Pharm; 2008 Apr; 354(1-2):126-34. PubMed ID: 18206325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dextran retention in the rat brain following release from a polymer implant.
    Dang W; Saltzman WM
    Biotechnol Prog; 1992; 8(6):527-32. PubMed ID: 1282018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passage of uncharged dextrans from blood to lung lymph in awake sheep.
    Lanken PN; Hansen-Flaschen JH; Sampson PM; Pietra GG; Haselton FR; Fishman AP
    J Appl Physiol (1985); 1985 Aug; 59(2):580-91. PubMed ID: 2411711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.