These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 1383195)

  • 1. Ribosomes exist in large excess over the apparent demand for protein synthesis during carbon starvation in marine Vibrio sp. strain CCUG 15956.
    Flärdh K; Cohen PS; Kjelleberg S
    J Bacteriol; 1992 Nov; 174(21):6780-8. PubMed ID: 1383195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose upshift of carbon-starved marine Vibrio sp. strain S14 causes amino acid starvation and induction of the stringent response.
    Flärdh K; Kjelleberg S
    J Bacteriol; 1994 Oct; 176(19):5897-903. PubMed ID: 7928949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular signal molecule(s) involved in the carbon starvation response of marine Vibrio sp. strain S14.
    Srinivasan S; Ostling J; Charlton T; de Nys R; Takayama K; Kjelleberg S
    J Bacteriol; 1998 Jan; 180(2):201-9. PubMed ID: 9440506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses to multiple-nutrient starvation in marine Vibrio sp. strain CCUG 15956.
    Nyström T; Flärdh K; Kjelleberg S
    J Bacteriol; 1990 Dec; 172(12):7085-97. PubMed ID: 1701428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of immediate upshift (Iup) proteins during recovery of marine Vibrio sp. strain S14 subjected to long-term carbon starvation.
    Marouga R; Kjelleberg S
    J Bacteriol; 1996 Feb; 178(3):817-22. PubMed ID: 8550518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global analysis of the carbon starvation response of a marine Vibrio species with disruptions in genes homologous to relA and spoT.
    Ostling J; Holmquist L; Kjelleberg S
    J Bacteriol; 1996 Aug; 178(16):4901-8. PubMed ID: 8759854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival, stress resistance, and alterations in protein expression in the marine vibrio sp. strain S14 during starvation for different individual nutrients.
    Nyström T; Olsson RM; Kjelleberg S
    Appl Environ Microbiol; 1992 Jan; 58(1):55-65. PubMed ID: 1371661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemotactic Responses of Marine Vibrio sp. Strain S14 (CCUG 15956) to Low-Molecular-Weight Substances under Starvation and Recovery Conditions.
    Malmcrona-Friberg K; Goodman A; Kjelleberg S
    Appl Environ Microbiol; 1990 Dec; 56(12):3699-704. PubMed ID: 16348373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implications of rRNA operon copy number and ribosome content in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256.
    Fegatella F; Lim J; Kjelleberg S; Cavicchioli R
    Appl Environ Microbiol; 1998 Nov; 64(11):4433-8. PubMed ID: 9797303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fate of ribosomes in Escherichia coli cells starved for a carbon source.
    Kaplan R; Apirion D
    J Biol Chem; 1975 Mar; 250(5):1854-63. PubMed ID: 1089666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stringent control during carbon starvation of marine Vibrio sp. strain S14: molecular cloning, nucleotide sequence, and deletion of the relA gene.
    Flärdh K; Axberg T; Albertson NH; Kjelleberg S
    J Bacteriol; 1994 Oct; 176(19):5949-57. PubMed ID: 7928955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution of ribosomes between different functional states in livers of fed and starved mice.
    Norman M; Gamulin S; Clark K
    Biochem J; 1973 Jun; 134(2):387-98. PubMed ID: 16742797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological responses to starvation in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256.
    Fegatella F; Cavicchioli R
    Appl Environ Microbiol; 2000 May; 66(5):2037-44. PubMed ID: 10788378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations in rRNA content of marine Vibrio spp. during starvation-survival and recovery.
    Kramer JG; Singleton FL
    Appl Environ Microbiol; 1992 Jan; 58(1):201-7. PubMed ID: 1371659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct Survival, Growth Lag, and rRNA Degradation Kinetics during Long-Term Starvation for Carbon or Phosphate.
    Himeoka Y; Gummesson B; Sørensen MA; Svenningsen SL; Mitarai N
    mSphere; 2022 Jun; 7(3):e0100621. PubMed ID: 35440180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restoration effects of glucose refeeding on reduced synthesis of albumin and total protein and on disaggregated polyribosomes in liver of starved rats: evidence of a post-transcriptional control mechanism.
    Princen JM; Mol-Backx GP; Yap SH
    Ann Nutr Metab; 1983; 27(3):182-93. PubMed ID: 6859809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entry of mRNA into polyribosomes during recovery from starvation in mouse sarcoma 180 cells.
    Sonenshein GE; Brawerman G
    Eur J Biochem; 1977 Feb; 73(1):307-12. PubMed ID: 837943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of ribosome synthesis in Tetrahymena pyriformis. 1. Coordination of synthesis of ribosomal proteins and ribosomal RNA during nutritional shift-down.
    Dreisig H; Andreasen PH; Kristiansen K
    Eur J Biochem; 1984 May; 140(3):469-75. PubMed ID: 6426953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyribosome concentration in human skeletal muscle after starvation and parenteral or enteral refeeding.
    Wernerman J; von der Decken A; Vinnars E
    Metabolism; 1986 May; 35(5):447-51. PubMed ID: 3084907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of a carbon starvation regulatory mutant in a marine Vibrio strain.
    Ostling J; Flärdh K; Kjelleberg S
    J Bacteriol; 1995 Dec; 177(23):6978-82. PubMed ID: 7592494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.