These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The formation of mercapturic acids. 1. Formation of mercapturic acid and the levels of glutathione in tissues. BARNES MM; JAMES SP; WOOD PB Biochem J; 1959 Apr; 71(4):680-90. PubMed ID: 13651117 [No Abstract] [Full Text] [Related]
3. Glutathione conjugation and conversion to mercapturic acids can occur as an intrahepatic process. Hinchman CA; Ballatori N J Toxicol Environ Health; 1994 Apr; 41(4):387-409. PubMed ID: 8145281 [TBL] [Abstract][Full Text] [Related]
4. Metabolism of L-cysteine S-conjugates and N-(trideuteroacetyl)-L-cysteine S-conjugates of four fluoroethylenes in the rat. Role of balance of deacetylation and acetylation in relation to the nephrotoxicity of mercapturic acids. Commandeur JN; Stijntjes GJ; Wijngaard J; Vermeulen NP Biochem Pharmacol; 1991 Jun; 42(1):31-8. PubMed ID: 2069595 [TBL] [Abstract][Full Text] [Related]
5. Biochemical studies of toxic agents. 10. Observations on the metabolism of 35S-labelled mercapturic acids. MARSDEN CM; YOUNG L Biochem J; 1958 Jun; 69(2):257-65. PubMed ID: 13546174 [No Abstract] [Full Text] [Related]
6. The formation of mercapturic acids. 4. Deacetylation of mercapturic acids by the rabbit, rat and guinea pig. BRAY HG; JAMES SP Biochem J; 1960 Feb; 74(2):394-7. PubMed ID: 13804053 [No Abstract] [Full Text] [Related]
7. Nephrotoxicity of mercapturic acids of three structurally related 2,2-difluoroethylenes in the rat. Indications for different bioactivation mechanisms. Commandeur JN; Brakenhoff JP; De Kanter FJ; Vermeulen NP Biochem Pharmacol; 1988 Dec; 37(23):4495-504. PubMed ID: 3202890 [TBL] [Abstract][Full Text] [Related]
8. Metabolic coordination of liver and kidney in mercapturic acid biosynthesis in vivo. Inoue M; Okajima K; Morino Y Hepatology; 1982; 2(3):311-6. PubMed ID: 7076112 [TBL] [Abstract][Full Text] [Related]
9. Inter-organ metabolism and transport of a cysteine-S-conjugate of xenobiotics in normal and mutant analbuminemic rats. Inoue M; Okajima K; Nagase S; Morino Y Biochem Pharmacol; 1987 Jul; 36(13):2145-50. PubMed ID: 3606632 [TBL] [Abstract][Full Text] [Related]
10. Enterohepatic circulation of the mercapturic acid and cysteine conjugates of propachlor. Bakke JE; Rafter J; Larsen GL; Gustafsson JA; Gustafsson BE Drug Metab Dispos; 1981; 9(6):525-8. PubMed ID: 6120810 [TBL] [Abstract][Full Text] [Related]
11. Enzymatic transformation of mercapturic acids derived from halogenated alkenes to reactive and mutagenic intermediates. Vamvakas S; Dekant W; Berthold K; Schmidt S; Wild D; Henschler D Biochem Pharmacol; 1987 Sep; 36(17):2741-8. PubMed ID: 3307787 [TBL] [Abstract][Full Text] [Related]
12. Hepato-renal cooperation in biotransformation, membrane transport, and elimination of cysteine S-conjugates of xenobiotics. Inoue M; Okajima K; Morino Y J Biochem; 1984 Jan; 95(1):247-54. PubMed ID: 6706912 [TBL] [Abstract][Full Text] [Related]
13. The metabolism of pentachloronitrobenzene and 2:3:4:6-tetrachloronitrobenzene and the formation of mercapturic acids in the rabbit. BETTS JJ; JAMES SP; THORPE WV Biochem J; 1955 Dec; 61(4):611-7. PubMed ID: 13276346 [No Abstract] [Full Text] [Related]
14. The fate of mercapturic acids in the animal body. WEST HD; MILLER IH J Natl Med Assoc; 1962 Jan; 54(1):17-21. PubMed ID: 14006297 [No Abstract] [Full Text] [Related]
15. Biotransformation of trichloroethene: dose-dependent excretion of 2,2,2-trichloro-metabolites and mercapturic acids in rats and humans after inhalation. Bernauer U; Birner G; Dekant W; Henschler D Arch Toxicol; 1996; 70(6):338-46. PubMed ID: 8975632 [TBL] [Abstract][Full Text] [Related]
16. The metabolism of 2:3-, 2:6- and 3:5-dichloronitrobenzene and the formation of a mercapturic acid from 2:3:4:5-tetrachloronitro-benzene in the rabbit. BRAY HG; JAMES SP; THORPE WV Biochem J; 1957 Dec; 67(4):607-16. PubMed ID: 13488913 [No Abstract] [Full Text] [Related]
17. Metabolism of N-acetyl-L-cysteine. Some structural requirements for the deacetylation and consequences for the oral bioavailability. Sjödin K; Nilsson E; Hallberg A; Tunek A Biochem Pharmacol; 1989 Nov; 38(22):3981-5. PubMed ID: 2597179 [TBL] [Abstract][Full Text] [Related]
18. The formation of mercapturic acids. 2. The possible role of glutathionase. BRAY HG; FRANKLIN TJ; JAMES SP Biochem J; 1959 Apr; 71(4):690-6. PubMed ID: 13651118 [No Abstract] [Full Text] [Related]
19. Gut microflora and tissue protein turnover in vivo in animals. Muramatsu T Int J Biochem; 1990; 22(8):793-800. PubMed ID: 2279614 [No Abstract] [Full Text] [Related]
20. Biotransformation, excretion and nephrotoxicity of haloalkene-derived cysteine S-conjugates. Birner G; Bernauer U; Werner M; Dekant W Arch Toxicol; 1997; 72(1):1-8. PubMed ID: 9458184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]