These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 13832095)

  • 1. Kinetics and equilibria in systems containing haem, carbon monoxide and pyridine.
    SMITH MH
    Biochem J; 1959 Sep; 73(1):90-101. PubMed ID: 13832095
    [No Abstract]   [Full Text] [Related]  

  • 2. Reactions of meso-hydroxyhemes with carbon monoxide and reducing agents in search of the elusive species responsible for the g = 2.006 resonance of carbon monoxide-treated heme oxygenase. Isolation of diamagnetic iron(II) complexes of octaethyl-meso-hydroxyporphyrin.
    Rath SP; Olmstead MM; Balch AL
    Inorg Chem; 2004 Oct; 43(20):6357-65. PubMed ID: 15446884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rate of O2 and CO binding to a copper complex, determined by a "flash-and-trap" technique, exceeds that for hemes.
    Fry HC; Scaltrito DV; Karlin KD; Meyer GJ
    J Am Chem Soc; 2003 Oct; 125(39):11866-71. PubMed ID: 14505408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The combination of carbon monoxide-haem with apoperoxidase.
    Phelps C; Antonini E
    Biochem J; 1969 Oct; 114(4):719-24. PubMed ID: 5343772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geminate carbon monoxide rebinding to a c-type haem.
    Silkstone G; Jasaitis A; Vos MH; Wilson MT
    Dalton Trans; 2005 Nov; (21):3489-94. PubMed ID: 16234930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of CO binding to the haem domain of murine inducible nitric oxide synthase: differential effects of haem domain ligands.
    Stevenson TH; Gutierrez AF; Alderton WK; Lian L; Scrutton NS
    Biochem J; 2001 Aug; 358(Pt 1):201-8. PubMed ID: 11485568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the internal cavity of neuroglobin demonstrates the role of the haem-sliding mechanism.
    Avella G; Ardiccioni C; Scaglione A; Moschetti T; Rondinelli C; Montemiglio LC; Savino C; Giuffrè A; Brunori M; Vallone B
    Acta Crystallogr D Biol Crystallogr; 2014 Jun; 70(Pt 6):1640-8. PubMed ID: 24914975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral-Kinetic Analysis of Recombination Reaction of Heme Centers of bd-Type Quinol Oxidase from Escherichia coli with Carbon Monoxide.
    Siletsky SA; Dyuba AV; Elkina DA; Monakhova MV; Borisov VB
    Biochemistry (Mosc); 2017 Nov; 82(11):1354-1366. PubMed ID: 29223162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extrusion of CO from aryl ketones: rhodium(I)-catalyzed C-C bond cleavage directed by a pyridine group.
    Lei ZQ; Li H; Li Y; Zhang XS; Chen K; Wang X; Sun J; Shi ZJ
    Angew Chem Int Ed Engl; 2012 Mar; 51(11):2690-4. PubMed ID: 22311614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics and equilibria for carbon monoxide binding to ferrous phthalocyanine complexes.
    Stynes DV; James BR
    J Am Chem Soc; 1974 May; 96(9):2733-8. PubMed ID: 4833459
    [No Abstract]   [Full Text] [Related]  

  • 11. Cytochrome bo from Escherichia coli: identification of haem ligands and reaction of the reduced enzyme with carbon monoxide.
    Cheesman MR; Watmough NJ; Pires CA; Turner R; Brittain T; Gennis RB; Greenwood C; Thomson AJ
    Biochem J; 1993 Feb; 289 ( Pt 3)(Pt 3):709-18. PubMed ID: 8382047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of haem degradation in vitro. Kinetic evidence for the formation of a haem-oxygen complex.
    Brown SB; Thomas SE
    Biochem J; 1978 Oct; 176(1):327-30. PubMed ID: 728112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heme/non-heme diiron(II) complexes and O2, CO, and NO adducts as reduced and substrate-bound models for the active site of bacterial nitric oxide reductase.
    Wasser IM; Huang HW; Moënne-Loccoz P; Karlin KD
    J Am Chem Soc; 2005 Mar; 127(10):3310-20. PubMed ID: 15755147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic Insights into the Activation of Soluble Guanylate Cyclase by Carbon Monoxide: A Multistep Mechanism Proposed for the BAY 41-2272 Induced Formation of 5-Coordinate CO-Heme.
    Makino R; Obata Y; Tsubaki M; Iizuka T; Hamajima Y; Kato-Yamada Y; Mashima K; Shiro Y
    Biochemistry; 2018 Mar; 57(10):1620-1631. PubMed ID: 29461815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon monoxide inhibits hemotoxic activity of Elapidae venoms: potential role of heme.
    Nielsen VG; Frank N; Matika RW
    Biometals; 2018 Feb; 31(1):51-59. PubMed ID: 29170850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent atomic coordinates for the dissociation of carbon monoxide from myoglobin.
    Aranda R; Levin EJ; Schotte F; Anfinrud PA; Phillips GN
    Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):776-83. PubMed ID: 16790933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nickel N-heterocyclic carbene-pyridine complexes that exhibit selectivity for electrocatalytic reduction of carbon dioxide over water.
    Thoi VS; Chang CJ
    Chem Commun (Camb); 2011 Jun; 47(23):6578-80. PubMed ID: 21556400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Structural study of enzymes involved in heme metabolism].
    Sugishima M
    Seikagaku; 2016 Apr; 88(2):171-81. PubMed ID: 27192867
    [No Abstract]   [Full Text] [Related]  

  • 19. Relationship between the electron density of the heme Fe atom and the vibrational frequencies of the Fe-bound carbon monoxide in myoglobin.
    Nishimura R; Shibata T; Tai H; Ishigami I; Ogura T; Nagao S; Matsuo T; Hirota S; Imai K; Neya S; Suzuki A; Yamamoto Y
    Inorg Chem; 2013 Mar; 52(6):3349-55. PubMed ID: 23445324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex interactions of carbon monoxide with reduced cytochrome cbb3 oxidase from Pseudomonas stutzeri.
    Pitcher RS; Brittain T; Watmough NJ
    Biochemistry; 2003 Sep; 42(38):11263-71. PubMed ID: 14503876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.