BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 1383224)

  • 1. Ruthenium red inhibits the binding of calcium to calmodulin required for enzyme activation.
    Sasaki T; Naka M; Nakamura F; Tanaka T
    J Biol Chem; 1992 Oct; 267(30):21518-23. PubMed ID: 1383224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of calmodulin function and of Ca2+-induced smooth muscle contraction by the calmodulin antagonist, HT-74.
    Tanaka T; Umekawa H; Saitoh M; Ishikawa T; Shin T; Ito M; Itoh H; Kawamatsu Y; Sugihara H; Hidaka H
    Mol Pharmacol; 1986 Mar; 29(3):264-9. PubMed ID: 3005834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of calmodulin-, Ca(2+)-, and ruthenium red-binding domains in the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum.
    Chen SR; MacLennan DH
    J Biol Chem; 1994 Sep; 269(36):22698-704. PubMed ID: 7521330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ activation of smooth muscle contraction: evidence for the involvement of calmodulin that is bound to the triton insoluble fraction even in the absence of Ca2+.
    Wilson DP; Sutherland C; Walsh MP
    J Biol Chem; 2002 Jan; 277(3):2186-92. PubMed ID: 11707462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calponin-calmodulin interaction: properties and effects on smooth and skeletal muscle actin binding and actomyosin ATPases.
    Winder SJ; Walsh MP; Vasulka C; Johnson JD
    Biochemistry; 1993 Dec; 32(48):13327-33. PubMed ID: 8241189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different mechanisms for Ca2+ dissociation from complexes of calmodulin with nitric oxide synthase or myosin light chain kinase.
    Persechini A; White HD; Gansz KJ
    J Biol Chem; 1996 Jan; 271(1):62-7. PubMed ID: 8550626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of human platelet secretion and of Ca2+, calmodulin-dependent protein phosphorylation by the antiallergic agent GMCHA.
    Tanaka T; Saitoh M; Ito M; Shin T; Naka M; Endo K; Hidaka H
    Biochem Pharmacol; 1988 Jul; 37(13):2537-42. PubMed ID: 3390216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergent effects of ruthenium red and ryanodine on Ca2+/calmodulin-dependent phosphorylation of the Ca2+ release channel (ryanodine receptor) in cardiac sarcoplasmic reticulum.
    Netticadan T; Xu A; Narayanan N
    Arch Biochem Biophys; 1996 Sep; 333(2):368-76. PubMed ID: 8809075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+, caldesmon, and myosin light chain kinase exchange with calmodulin.
    Kasturi R; Vasulka C; Johnson JD
    J Biol Chem; 1993 Apr; 268(11):7958-64. PubMed ID: 8463316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KN-62, 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazi ne, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II.
    Tokumitsu H; Chijiwa T; Hagiwara M; Mizutani A; Terasawa M; Hidaka H
    J Biol Chem; 1990 Mar; 265(8):4315-20. PubMed ID: 2155222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of myosin light chain kinase and peptides on Ca2+ exchange with the N- and C-terminal Ca2+ binding sites of calmodulin.
    Johnson JD; Snyder C; Walsh M; Flynn M
    J Biol Chem; 1996 Jan; 271(2):761-7. PubMed ID: 8557684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The regulatory region of calcium/calmodulin-dependent protein kinase I contains closely associated autoinhibitory and calmodulin-binding domains.
    Yokokura H; Picciotto MR; Nairn AC; Hidaka H
    J Biol Chem; 1995 Oct; 270(40):23851-9. PubMed ID: 7559563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of smooth muscle myosin light chain kinase by Ca2+/calmodulin-dependent protein kinase II: comparative study of the phosphorylation sites.
    Hashimoto Y; Soderling TR
    Arch Biochem Biophys; 1990 Apr; 278(1):41-5. PubMed ID: 2157362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of doxorubicin and ruthenium red on intracellular Ca2+ stores in skinned rabbit mesenteric smooth-muscle fibres.
    Kanmura Y; Raeymaekers L; Casteels R
    Cell Calcium; 1989; 10(6):433-9. PubMed ID: 2476236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of myosin light chain kinase: kinetic mechanism, autophosphorylation, and cooperative activation by Ca2+ and calmodulin.
    Sobieszek A
    Can J Physiol Pharmacol; 1994 Nov; 72(11):1368-76. PubMed ID: 7767880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The MgATP-binding site on chicken gizzard myosin light chain kinase remains open and functionally competent during the calmodulin-dependent activation-inactivation cycle of the enzyme.
    Kennelly PJ; Leng J; Marchand P
    Biochemistry; 1992 Jun; 31(23):5394-9. PubMed ID: 1606165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chimeric calmodulin-cardiac troponin C proteins differentially activate calmodulin target enzymes.
    George SE; VanBerkum MF; Ono T; Cook R; Hanley RM; Putkey JA; Means AR
    J Biol Chem; 1990 Jun; 265(16):9228-35. PubMed ID: 2160966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of calyculin A on tension and myosin phosphorylation in skinned smooth muscle of the rabbit mesenteric artery.
    Suzuki A; Itoh T
    Br J Pharmacol; 1993 Jul; 109(3):703-12. PubMed ID: 8395295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular pharmacology of calcium, calmodulin-dependent myosin phosphorylation in vascular smooth muscle.
    Ishikawa T; Hidaka H
    Am J Hypertens; 1990 Aug; 3(8 Pt 2):231S-234S. PubMed ID: 2222974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermolecular tuning of calmodulin by target peptides and proteins: differential effects on Ca2+ binding and implications for kinase activation.
    Peersen OB; Madsen TS; Falke JJ
    Protein Sci; 1997 Apr; 6(4):794-807. PubMed ID: 9098889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.