These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 13837984)

  • 1. Studies on the natural state of bacteriochlorophyll.
    THOMAS JB; de GIER ; BRIL C
    Biochim Biophys Acta; 1959 Dec; 36():326-34. PubMed ID: 13837984
    [No Abstract]   [Full Text] [Related]  

  • 2. Observations on the infrared absorption spectrum of bacteriochlorophyll.
    KOMEN JG
    Biochim Biophys Acta; 1956 Oct; 22(1):9-15. PubMed ID: 13373841
    [No Abstract]   [Full Text] [Related]  

  • 3. The bacteriochlorophyll absorption band shifts linked with the energy state of photosynthetic bacteria membranes.
    Barsky EL; Samuilov VD
    J Bioenerg; 1973 Apr; 4(3):391-5. PubMed ID: 4200406
    [No Abstract]   [Full Text] [Related]  

  • 4. Relation of photosynthetic activity to carotenoid-bacteriochlorophyll interaction in Chromatium.
    FULLER RC; BERGERON JA; ANDERSON IC
    Arch Biochem Biophys; 1961 Feb; 92():273-9. PubMed ID: 13702555
    [No Abstract]   [Full Text] [Related]  

  • 5. X-ray diffraction studies on chromatophore membrane from photosynthetic bacteria. III. Basic structure of the photosynthetic unit and its relation to other bacteriochlorophyll forms.
    Nakamoto S; Kataoka M; Ueki T
    J Biochem; 1984 Dec; 96(6):1831-9. PubMed ID: 6442292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of carotenoids on the infra-red spectrum of bacteriochlorophyll in Chromatium.
    BERGERON JA; FULLER RC
    Nature; 1959 Oct; 184(Suppl 17)():1340-1. PubMed ID: 13799328
    [No Abstract]   [Full Text] [Related]  

  • 7. Investigations on bacteriochlorophyll in organic solutions.
    GOEDHEER JC
    Biochim Biophys Acta; 1958 Mar; 27(3):478-90. PubMed ID: 13535628
    [No Abstract]   [Full Text] [Related]  

  • 8. [Delayed bacteriochlorophyll luminescence and the primary stages of electron transport in photosynthetic reaction centers of purple bacteria].
    Borisov AIu; Kotova EA; Samuilov VD
    Mol Biol (Mosk); 1984; 18(4):869-91. PubMed ID: 6095028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dichroism of bacteriochlorophyll in chromatophores of photosynthetic bacteria.
    Morita S; Miyazaki T
    J Biochem; 1978 Jun; 83(6):1715-20. PubMed ID: 97281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Phototransformations of bacteriopheophytin in reaction centers of Rhodospirillum rubrum and Crhomatium minutissimum].
    Shuvalov VA; Klimov VV; Krakhmaleva IN; Moskalenko AA; KrasnovskiÄ­ AA
    Dokl Akad Nauk SSSR; 1976; 227(4):984-7. PubMed ID: 817883
    [No Abstract]   [Full Text] [Related]  

  • 11. Energy transfer between carotenoids and bacteriochlorophyll in chromatophores of purple bacteria.
    GOEDHEER JC
    Biochim Biophys Acta; 1959 Sep; 35():1-8. PubMed ID: 13850395
    [No Abstract]   [Full Text] [Related]  

  • 12. EPR and optical spectroscopic properties of the electron carrier intermediate between the reaction center bacteriochlorophylls and the primary acceptor in Chromatium vinosum.
    Tiede DM; Prince RC; Dutton PL
    Biochim Biophys Acta; 1976 Dec; 449(3):447-67. PubMed ID: 187221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of reduction of the reaction center intermediate upon the picosecond oxidation reaction of the bacteriochlorophyll dimer in Chromatium vinosum and Rhodo Pseudomonas viridis.
    Netzel TL; Rentzepis PM; Tiede DM; Prince RC; Dutton PL
    Biochim Biophys Acta; 1977 Jun; 460(3):467-79. PubMed ID: 880297
    [No Abstract]   [Full Text] [Related]  

  • 14. 13C-NMR evidence of bacteriochlorophyll a formation by the C5 pathway in Chromatium.
    Oh-hama T; Seto H; Miyachi S
    Arch Biochem Biophys; 1986 Apr; 246(1):192-8. PubMed ID: 3963821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Bacteriochlorophyll fluorescence changes related to the bacteriopheophytin photoreduction in the chromatophores of purple sulfur bacteria].
    Klimov VV; Shuvalov VA; Krakhmaleva IN; Karapetian NV; KrasiovskiÄ­ AA
    Biokhimiia; 1976 Aug; 41(8):1435-41. PubMed ID: 1024595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trace metal composition of photosynthetic bacteria.
    Kassner RJ; Kamen MD
    Biochim Biophys Acta; 1968 Jan; 153(1):270-8. PubMed ID: 4295561
    [No Abstract]   [Full Text] [Related]  

  • 17. Biosynthesis of phenylalanine from phenylacetate by Chromatium and Rhodospirillum rubrum.
    Allison MJ; Robinson IM
    J Bacteriol; 1967 Apr; 93(4):1269-75. PubMed ID: 6032506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism.
    ORMEROD JG; ORMEROD KS; GEST H
    Arch Biochem Biophys; 1961 Sep; 94():449-63. PubMed ID: 13731247
    [No Abstract]   [Full Text] [Related]  

  • 19. The role of P870 in bacterial photosynthesis.
    Parson WW
    Biochim Biophys Acta; 1968 Jan; 153(1):248-59. PubMed ID: 5638394
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on bacterial chromatophores. II. Energy transfer and photooxidative bleaching of bacteriochlorophyll in relation to structure in normal and carotenoid-depleted Chromatium.
    BRIL C
    Biochim Biophys Acta; 1963 Jan; 66():50-60. PubMed ID: 14015480
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.