BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

610 related articles for article (PubMed ID: 1384032)

  • 1. Empirical solvation models in the context of conformational energy searches: application to bovine pancreatic trypsin inhibitor.
    Williams RL; Vila J; Perrot G; Scheraga HA
    Proteins; 1992 Sep; 14(1):110-9. PubMed ID: 1384032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empirical solvation models can be used to differentiate native from near-native conformations of bovine pancreatic trypsin inhibitor.
    Vila J; Williams RL; Vásquez M; Scheraga HA
    Proteins; 1991; 10(3):199-218. PubMed ID: 1715564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the multiple-minima problem in the conformational analysis of polypeptides. V. Application of the self-consistent electrostatic field and the electrostatically driven Monte Carlo methods to bovine pancreatic trypsin inhibitor.
    Ripoll DR; Piela L; Vásquez M; Scheraga HA
    Proteins; 1991; 10(3):188-98. PubMed ID: 1715563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational analysis of endothelin-1: effects of solvation free energy.
    Hempel JC; Fine RM; Hassan M; Ghoul W; Guaragna A; Koerber SC; Li Z; Hagler AT
    Biopolymers; 1995 Sep; 36(3):283-301. PubMed ID: 7669916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of a 12-residue loop in bovine pancreatic trypsin inhibitor: effects of buried water.
    Carlacci L
    Biopolymers; 2001 Apr; 58(4):359-73. PubMed ID: 11180050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of conformational equilibrium of peptides in solution by NMR spectroscopy and theoretical conformational analysis: application to the calibration of mean-field solvation models.
    Groth M; Malicka J; Rodziewicz- Motowidło S; Czaplewski C; Klaudel L; Wiczk W; Liwo A
    Biopolymers; 2001; 60(2):79-95. PubMed ID: 11455544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein conformational landscapes: energy minimization and clustering of a long molecular dynamics trajectory.
    Troyer JM; Cohen FE
    Proteins; 1995 Sep; 23(1):97-110. PubMed ID: 8539254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A continuum model for protein-protein interactions: application to the docking problem.
    Jackson RM; Sternberg MJ
    J Mol Biol; 1995 Jul; 250(2):258-75. PubMed ID: 7541840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Necessary conditions for avoiding incorrect polypeptide folds in conformational search by energy minimization.
    Vajda S; Jafri MS; Sezerman OU; DeLisi C
    Biopolymers; 1993 Jan; 33(1):173-92. PubMed ID: 8427934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
    Schueler-Furman O; Wang C; Baker D
    Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of homologous protein structures based on conformational searches and energetics.
    Schiffer CA; Caldwell JW; Kollman PA; Stroud RM
    Proteins; 1990; 8(1):30-43. PubMed ID: 2217162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of the conformational ensemble of partially folded bovine pancreatic trypsin inhibitor.
    Barbar E; Hare M; Daragan V; Barany G; Woodward C
    Biochemistry; 1998 May; 37(21):7822-33. PubMed ID: 9601043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient mean solvation force model for use in molecular dynamics simulations of proteins in aqueous solution.
    Fraternali F; Van Gunsteren WF
    J Mol Biol; 1996 Mar; 256(5):939-48. PubMed ID: 8601844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural properties of hydration shell around various conformations of simple polypeptides.
    Czapiewski D; Zielkiewicz J
    J Phys Chem B; 2010 Apr; 114(13):4536-50. PubMed ID: 20232827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulations of the solution structure of simple alcohols in water-acetonitrile mixtures.
    Nagy PI; Erhardt PW
    J Phys Chem B; 2005 Mar; 109(12):5855-72. PubMed ID: 16851638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy.
    Guvench O; Weiser J; Shenkin P; Kolossváry I; Still WC
    J Comput Chem; 2002 Jan; 23(2):214-21. PubMed ID: 11924735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational sampling by NMR solution structures calculated with the program DIANA evaluated by comparison with long-time molecular dynamics calculations in explicit water.
    Berndt KD; Güntert P; Wüthrich K
    Proteins; 1996 Mar; 24(3):304-13. PubMed ID: 8778777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-inhibitor flexible docking by a multicanonical sampling: native complex structure with the lowest free energy and a free-energy barrier distinguishing the native complex from the others.
    Kamiya N; Yonezawa Y; Nakamura H; Higo J
    Proteins; 2008 Jan; 70(1):41-53. PubMed ID: 17636570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of hierarchical multiple substates of a protein. III: Side chain and main chain local conformations.
    Noguti T; Go N
    Proteins; 1989; 5(2):113-24. PubMed ID: 2748575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.