These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 13841040)
1. The wine yeasts of the cape. Part III. The fermentative dissimilation of glucose by Brettanomyces intermedius and Brettanomyces claussenii. VAN DER WALT JP; VAN KERKEN AE Antonie Van Leeuwenhoek; 1959; 25():449-57. PubMed ID: 13841040 [No Abstract] [Full Text] [Related]
2. The wine yeasts of the cape. V. Studies on the occurrence of Brettanomyces intermedius and Brettanomyces schanderlii. van der WALT J; van KERKEN A Antonie Van Leeuwenhoek; 1961; 27():81-90. PubMed ID: 13782934 [No Abstract] [Full Text] [Related]
3. The wine yeasts of the Cape. II. The occurrence of Brettanomyces intermedius and Brettanomyces schanderlii in South African table wines. VAN DER WALT JP; VAN KERKEN AE Antonie Van Leeuwenhoek; 1959; 25():145-51. PubMed ID: 13841039 [No Abstract] [Full Text] [Related]
4. Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp. Mehlomakulu NN; Setati ME; Divol B Int J Food Microbiol; 2014 Oct; 188():83-91. PubMed ID: 25087208 [TBL] [Abstract][Full Text] [Related]
5. Brettanomyces bruxellensis yeasts: impact on wine and winemaking. Agnolucci M; Tirelli A; Cocolin L; Toffanin A World J Microbiol Biotechnol; 2017 Sep; 33(10):180. PubMed ID: 28936776 [TBL] [Abstract][Full Text] [Related]
6. Kluyveromyces wickerhamii killer toxin: purification and activity towards Brettanomyces/Dekkera yeasts in grape must. Comitini F; Ciani M FEMS Microbiol Lett; 2011 Mar; 316(1):77-82. PubMed ID: 21204930 [TBL] [Abstract][Full Text] [Related]
7. Interactions between Brettanomyces bruxellensis and other yeast species during the initial stages of winemaking. Renouf V; Falcou M; Miot-Sertier C; Perello MC; De Revel G; Lonvaud-Funel A J Appl Microbiol; 2006 Jun; 100(6):1208-19. PubMed ID: 16696668 [TBL] [Abstract][Full Text] [Related]
8. A Response Surface Methodology study on the role of factors affecting growth and volatile phenol production by Brettanomyces bruxellensis ISA 2211 in wine. Chandra M; Barata A; Ferreira-Dias S; Malfeito-Ferreira M; Loureiro V Food Microbiol; 2014 Sep; 42():40-6. PubMed ID: 24929715 [TBL] [Abstract][Full Text] [Related]
9. On the inhibition of alcoholic fermentation of Brettanomyces yeasts under anaerobic conditions. SCHEFFERS WA Experientia; 1961 Jan; 17():40-2. PubMed ID: 13747369 [No Abstract] [Full Text] [Related]
10. On the existence of a negative Pasteur effect in yeasts classified in the genus Brettanomyces Kufferath et Van Laer. WIKEN T; SCHEFFERS WA; VERHAAR AJ Antonie Van Leeuwenhoek; 1961; 27():401-33. PubMed ID: 14006915 [No Abstract] [Full Text] [Related]
11. [Physiology of wine yeasts. VII. Effect of common buffer systems of organic acids on aerobic and anaerobic fermentation of glucose by wine yeasts Fendant from young and old cultures]. WIKEN T; PFENNIG N Antonie Van Leeuwenhoek; 1957; 23(2):113-49. PubMed ID: 13470840 [No Abstract] [Full Text] [Related]
12. Novel antimicrobial peptides produced by Candida intermedia LAMAP1790 active against the wine-spoilage yeast Brettanomyces bruxellensis. Peña R; Ganga MA Antonie Van Leeuwenhoek; 2019 Feb; 112(2):297-304. PubMed ID: 30187229 [TBL] [Abstract][Full Text] [Related]
13. The influence of potassium and sodium ions on the negative Pasteur effect in Brettanomyces claussenii Custers. WIKEN TO; VERHAAR AJ; SCHEFFERS WA Arch Mikrobiol; 1962; 42():226-36. PubMed ID: 14006917 [No Abstract] [Full Text] [Related]
14. The effect of sulphur dioxide and oxygen on the viability and culturability of a strain of Acetobacter pasteurianus and a strain of Brettanomyces bruxellensis isolated from wine. du Toit WJ; Pretorius IS; Lonvaud-Funel A J Appl Microbiol; 2005; 98(4):862-71. PubMed ID: 15752332 [TBL] [Abstract][Full Text] [Related]
16. Growth rates of Dekkera/Brettanomyces yeasts hinder their ability to compete with Saccharomyces cerevisiae in batch corn mash fermentations. Abbott DA; Hynes SH; Ingledew WM Appl Microbiol Biotechnol; 2005 Mar; 66(6):641-7. PubMed ID: 15538553 [TBL] [Abstract][Full Text] [Related]
17. Quantification and characterization of cell wall polysaccharides released by non-Saccharomyces yeast strains during alcoholic fermentation. Giovani G; Rosi I; Bertuccioli M Int J Food Microbiol; 2012 Nov; 160(2):113-8. PubMed ID: 23177050 [TBL] [Abstract][Full Text] [Related]
18. Hydroxycinnamoyl Glucose and Tartrate Esters and Their Role in the Formation of Ethylphenols in Wine. Hixson JL; Hayasaka Y; Curtin CD; Sefton MA; Taylor DK J Agric Food Chem; 2016 Dec; 64(49):9401-9411. PubMed ID: 27960298 [TBL] [Abstract][Full Text] [Related]
19. Adaptation of yeasts Saccharomyces cerevisiae and Brettanomyces bruxellensis to winemaking conditions: a comparative study of stress genes expression. Nardi T; Remize F; Alexandre H Appl Microbiol Biotechnol; 2010 Oct; 88(4):925-37. PubMed ID: 20730535 [TBL] [Abstract][Full Text] [Related]
20. Factors affecting the hydroxycinnamate decarboxylase/vinylphenol reductase activity of dekkera/brettanomyces: application for dekkera/brettanomyces control in red wine making. Benito S; Palomero F; Morata A; Calderón F; Suárez-Lepe JA J Food Sci; 2009; 74(1):M15-22. PubMed ID: 19200101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]