BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 1384463)

  • 1. The oxidative pentose phosphate pathway in the heart: regulation, physiological significance, and clinical implications.
    Zimmer HG
    Basic Res Cardiol; 1992; 87(4):303-16. PubMed ID: 1384463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of and intervention into the oxidative pentose phosphate pathway and adenine nucleotide metabolism in the heart.
    Zimmer HG
    Mol Cell Biochem; 1996; 160-161():101-9. PubMed ID: 8901462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of the 5-phosphoribosyl-1-pyrophosphate pool for cardiac purine and pyrimidine nucleotide synthesis: studies with ribose, adenine, inosine, and orotic acid in rats.
    Zimmer HG
    Cardiovasc Drugs Ther; 1998 Sep; 12 Suppl 2():179-87. PubMed ID: 9794092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meiotic induction in cumulus cell-enclosed mouse oocytes: involvement of the pentose phosphate pathway.
    Downs SM; Humpherson PG; Leese HJ
    Biol Reprod; 1998 Apr; 58(4):1084-94. PubMed ID: 9546744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of norepinephrine on the oxidative pentose phosphate pathway in the rat heart.
    Zimmer HG; Lankat-Buttgereit B; Kolbeck-Rühmkorff C; Nagano T; Zierhut W
    Circ Res; 1992 Aug; 71(2):451-9. PubMed ID: 1378361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-adrenergic agonists stimulate the oxidative pentose phosphate pathway in the rat heart.
    Zimmer HG; Ibel H; Suchner U
    Circ Res; 1990 Dec; 67(6):1525-34. PubMed ID: 1978808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribose intervention in the cardiac pentose phosphate pathway is not species-specific.
    Zimmer HG; Ibel H; Suchner U; Schad H
    Science; 1984 Feb; 223(4637):712-4. PubMed ID: 6420889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in pathways of pentose phosphate formation in relation to phosphoribosyl pyrophosphate synthesis in the developing rat kidney. Effects of glucose concentration and electron acceptors.
    Sochor M; Kunjara S; Greenbaum AL; McLean P
    J Dev Physiol; 1989 Sep; 12(3):135-43. PubMed ID: 2483165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribose metabolism and nucleic acid synthesis in normal and glucose-6-phosphate dehydrogenase-deficient human erythrocytes infected with Plasmodium falciparum.
    Roth EF; Ruprecht RM; Schulman S; Vanderberg J; Olson JA
    J Clin Invest; 1986 Apr; 77(4):1129-35. PubMed ID: 2420826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-demand utilization of phosphoribosyl pyrophosphate by downstream anabolic pathways.
    Pinson B; Moenner M; Saint-Marc C; Granger-Farbos A; Daignan-Fornier B
    J Biol Chem; 2023 Aug; 299(8):105011. PubMed ID: 37414150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data mining of the transcriptome of Plasmodium falciparum: the pentose phosphate pathway and ancillary processes.
    Bozdech Z; Ginsburg H
    Malar J; 2005 Mar; 4():17. PubMed ID: 15774020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effect of 5-phosphoribosyl 1-pyrophosphate and ADP on the nonoxidative pentose phosphate pathway activity.
    Hosomi S; Tara H; Terada T; Mizoguchi T
    Biochem Med Metab Biol; 1989 Aug; 42(1):52-9. PubMed ID: 2476163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribose-enhanced myocardial recovery following ischemia in the isolated working rat heart.
    Pasque MK; Spray TL; Pellom GL; Van Trigt P; Peyton RB; Currie WD; Wechsler AS
    J Thorac Cardiovasc Surg; 1982 Mar; 83(3):390-8. PubMed ID: 6174831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell cycle regulation of purine synthesis by phosphoribosyl pyrophosphate and inorganic phosphate.
    Fridman A; Saha A; Chan A; Casteel DE; Pilz RB; Boss GR
    Biochem J; 2013 Aug; 454(1):91-9. PubMed ID: 23734909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribose accelerates the repletion of the ATP pool during recovery from reversible ischemia of the rat myocardium.
    Zimmer HG; Ibel H
    J Mol Cell Cardiol; 1984 Sep; 16(9):863-6. PubMed ID: 6436498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of ribose-5-phosphate and 5-phosphoribosyl-1-pyrophosphate generation by pyrroline-5-carboxylate in mouse liver in vivo: evidence for a regulatory role of ribose-5-phosphate availability in nucleotide synthesis.
    Boer P; Sperling O
    Biochem Med Metab Biol; 1991 Aug; 46(1):28-32. PubMed ID: 1718342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restitution of myocardial adenine nucleotides: acceleration by administration of ribose.
    Zimmer HG
    J Physiol (Paris); 1980; 76(7):769-75. PubMed ID: 6163849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of pentose phosphate pathway-derived NADPH in hypoxic pulmonary vasoconstriction.
    Gupte SA; Okada T; McMurtry IF; Oka M
    Pulm Pharmacol Ther; 2006; 19(4):303-9. PubMed ID: 16203165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pentose phosphate pathway activity: effect on in vitro maturation and oxidative status of bovine oocytes.
    Gutnisky C; Dalvit GC; Thompson JG; Cetica PD
    Reprod Fertil Dev; 2014 Aug; 26(7):931-42. PubMed ID: 23859479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significance of the hexose monophosphate shunt in experimentally induced cardiac hypertrophy.
    Zimmer HG; Ibel H; Gerlach E
    Basic Res Cardiol; 1980; 75(1):207-13. PubMed ID: 6155904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.