These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 1384599)

  • 1. Dynamic properties of the colicin E1 ion channel.
    Cramer WA; Zhang YL; Schendel S; Merrill AR; Song HY; Stauffacher CV; Cohen FS
    FEMS Microbiol Immunol; 1992 Sep; 5(1-3):71-81. PubMed ID: 1384599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1.
    Elkins P; Bunker A; Cramer WA; Stauffacher CV
    Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and dynamics of the colicin E1 channel.
    Cramer WA; Cohen FS; Merrill AR; Song HY
    Mol Microbiol; 1990 Apr; 4(4):519-26. PubMed ID: 1693745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-function of the channel-forming colicins.
    Cramer WA; Heymann JB; Schendel SL; Deriy BN; Cohen FS; Elkins PA; Stauffacher CV
    Annu Rev Biophys Biomol Struct; 1995; 24():611-41. PubMed ID: 7545041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intramembrane helix-helix interactions as the basis of inhibition of the colicin E1 ion channel by its immunity protein.
    Zhang YL; Cramer WA
    J Biol Chem; 1993 May; 268(14):10176-84. PubMed ID: 7683669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes.
    Zakharov SD; Cramer WA
    Biochim Biophys Acta; 2002 Oct; 1565(2):333-46. PubMed ID: 12409205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic properties of membrane proteins: reversible insertion into membrane vesicles of a colicin E1 channel-forming peptide.
    Xu S; Cramer WA; Peterson AA; Hermodson M; Montecucco C
    Proc Natl Acad Sci U S A; 1988 Oct; 85(20):7531-5. PubMed ID: 2459708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The long and short of colicin action: the molecular basis for the biological activity of channel-forming colicins.
    Gouaux E
    Structure; 1997 Mar; 5(3):313-7. PubMed ID: 9083116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constraints imposed by protease accessibility on the trans-membrane and surface topography of the colicin E1 ion channel.
    Zhang YL; Cramer WA
    Protein Sci; 1992 Dec; 1(12):1666-76. PubMed ID: 1284805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidic pH requirement for insertion of colicin E1 into artificial membrane vesicles: relevance to the mechanism of action of colicins and certain toxins.
    Davidson VL; Brunden KR; Cramer WA
    Proc Natl Acad Sci U S A; 1985 Mar; 82(5):1386-90. PubMed ID: 2579396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual domains of colicins confer specificity in colicin uptake, in pore-properties and in immunity requirement.
    Benedetti H; Frenette M; Baty D; Knibiehler M; Pattus F; Lazdunski C
    J Mol Biol; 1991 Feb; 217(3):429-39. PubMed ID: 1704440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a translocated protein segment in a voltage-dependent channel.
    Slatin SL; Qiu XQ; Jakes KS; Finkelstein A
    Nature; 1994 Sep; 371(6493):158-61. PubMed ID: 7521016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gating movements of colicin A and colicin Ia are different.
    Slatin SL; Duché D; Kienker PK; Baty D
    J Membr Biol; 2004 Nov; 202(2):73-83. PubMed ID: 15702371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the explanation of the acidic pH requirement for in vitro activity of colicin E1. Site-directed mutagenesis at Glu-468.
    Shiver JW; Cramer WA; Cohen FS; Bishop LJ; de Jong PJ
    J Biol Chem; 1987 Oct; 262(29):14273-81. PubMed ID: 2443503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the macroscopic and single channel conductance properties of colicin E1 and its COOH-terminal tryptic peptide.
    Bullock JO; Cohen FS; Dankert JR; Cramer WA
    J Biol Chem; 1983 Aug; 258(16):9908-12. PubMed ID: 6309789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A very short peptide makes a voltage-dependent ion channel: the critical length of the channel domain of colicin E1.
    Liu QR; Crozel V; Levinthal F; Slatin S; Finkelstein A; Levinthal C
    Proteins; 1986 Nov; 1(3):218-29. PubMed ID: 2453053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acrylamide quenching of the intrinsic fluorescence of tryptophan residues genetically engineered into the soluble colicin E1 channel peptide. Structural characterization of the insertion-competent state.
    Merrill AR; Palmer LR; Szabo AG
    Biochemistry; 1993 Jul; 32(27):6974-81. PubMed ID: 7687465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translocation of a functional protein by a voltage-dependent ion channel.
    Slatin SL; Nardi A; Jakes KS; Baty D; Duché D
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1286-91. PubMed ID: 11830660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of colicin Ia.
    Wiener M; Freymann D; Ghosh P; Stroud RM
    Nature; 1997 Jan; 385(6615):461-4. PubMed ID: 9009197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.