BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 1384742)

  • 1. Prolines are not essential residues in the "barrel-stave" model for ion channels induced by alamethicin analogues.
    Duclohier H; Molle G; Dugast JY; Spach G
    Biophys J; 1992 Sep; 63(3):868-73. PubMed ID: 1384742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of proline-14 substitution on the secondary structure in a synthetic analogue of alamethicin.
    Brachais L; Duclohier H; Mayer C; Davoust D; Molle G
    Biopolymers; 1995 Oct; 36(4):547-58. PubMed ID: 7578948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of proline position upon the ion channel activity of alamethicin.
    Kaduk C; Duclohier H; Dathe M; Wenschuh H; Beyermann M; Molle G; Bienert M
    Biophys J; 1997 May; 72(5):2151-9. PubMed ID: 9129817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational study of a synthetic analogue of alamethicin. Influence of the conformation on ion-channel lifetimes.
    Brachais L; Davoust D; Molle G
    Int J Pept Protein Res; 1995 Feb; 45(2):164-72. PubMed ID: 7540163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion channel stabilization of synthetic alamethicin analogs by rings of inter-helix H-bonds.
    Molle G; Dugast JY; Spach G; Duclohier H
    Biophys J; 1996 Apr; 70(4):1669-75. PubMed ID: 8785325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional modifications of alamethicin ion channels by substitution of glutamine 7, glycine 11 and proline 14.
    Kaduk C; Dathe M; Bienert M
    Biochim Biophys Acta; 1998 Aug; 1373(1):137-46. PubMed ID: 9733952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of proline and glycine in determining the backbone flexibility of a channel-forming peptide.
    Jacob J; Duclohier H; Cafiso DS
    Biophys J; 1999 Mar; 76(3):1367-76. PubMed ID: 10049319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational changes in alamethicin associated with substitution of its alpha-methylalanines with leucines: a FTIR spectroscopic analysis and correlation with channel kinetics.
    Haris PI; Molle G; Duclohier H
    Biophys J; 2004 Jan; 86(1 Pt 1):248-53. PubMed ID: 14695266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alamethicin. A rich model for channel behavior.
    Hall JE; Vodyanoy I; Balasubramanian TM; Marshall GR
    Biophys J; 1984 Jan; 45(1):233-47. PubMed ID: 6324906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ion-channel activity of longibrachins LGA I and LGB II: effects of pro-2/Ala and gln-18/Glu substitutions on the alamethicin voltage-gated membrane channels.
    Cosette P; Rebuffat S; Bodo B; Molle G
    Biochim Biophys Acta; 1999 Nov; 1461(1):113-22. PubMed ID: 10556493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic analogues of alamethicin: effect of C-terminal residue substitutions and chain length on the ion channel lifetimes.
    Molle G; Duclohier H; Julien S; Spach G
    Biochim Biophys Acta; 1991 May; 1064(2):365-9. PubMed ID: 1709813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alamethicin: a peptide model for voltage gating and protein-membrane interactions.
    Cafiso DS
    Annu Rev Biophys Biomol Struct; 1994; 23():141-65. PubMed ID: 7522664
    [No Abstract]   [Full Text] [Related]  

  • 13. Membrane structure of voltage-gated channel forming peptides by site-directed spin-labeling.
    Barranger-Mathys M; Cafiso DS
    Biochemistry; 1996 Jan; 35(2):498-505. PubMed ID: 8555220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Channel properties of template assembled alamethicin tetramers.
    Duclohier H; Alder G; Kociolek K; Leplawy MT
    J Pept Sci; 2003; 9(11-12):776-83. PubMed ID: 14658797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The barrel-stave model as applied to alamethicin and its analogs reevaluated.
    Laver DR
    Biophys J; 1994 Feb; 66(2 Pt 1):355-9. PubMed ID: 7512830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two classes of alamethicin transmembrane channels: molecular models from single-channel properties.
    Mak DO; Webb WW
    Biophys J; 1995 Dec; 69(6):2323-36. PubMed ID: 8599639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the secondary structure on the pore forming properties of synthetic alamethicin analogs: NMR and molecular modelling studies.
    Brachais L; Mayer C; Davoust D; Molle G
    J Pept Sci; 1998 Aug; 4(5):344-54. PubMed ID: 9753394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alamethicin-like behaviour of new 18-residue peptaibols, trichorzins PA. Role of the C-terminal amino-alcohol in the ion channel forming activity.
    Duval D; Cosette P; Rebuffat S; Duclohier H; Bodo B; Molle G
    Biochim Biophys Acta; 1998 Mar; 1369(2):309-19. PubMed ID: 9518665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion channel stability and hydrogen bonding. Molecular modelling of channels formed by synthetic alamethicin analogues.
    Breed J; Kerr ID; Molle G; Duclohier H; Sansom MS
    Biochim Biophys Acta; 1997 Dec; 1330(2):103-9. PubMed ID: 9408161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alamethicin pyromellitate: an ion-activated channel-forming peptide.
    Woolley GA; Epand RM; Kerr ID; Sansom MS; Wallace BA
    Biochemistry; 1994 Jun; 33(22):6850-8. PubMed ID: 7515685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.