These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
425 related articles for article (PubMed ID: 1384905)
1. Phosphodiesterase inhibition in ventricular cardiomyocytes from guinea-pig hearts. Bethke T; Meyer W; Schmitz W; Scholz H; Stein B; Thomas K; Wenzlaff H Br J Pharmacol; 1992 Sep; 107(1):127-33. PubMed ID: 1384905 [TBL] [Abstract][Full Text] [Related]
2. Comparison of cyclic nucleotide phosphodiesterase isoenzymes in rat and rabbit ventricular myocardium: positive inotropic and phosphodiesterase inhibitory effects of Org 30029, milrinone and rolipram. Shahid M; Nicholson CD Naunyn Schmiedebergs Arch Pharmacol; 1990 Dec; 342(6):698-705. PubMed ID: 1710786 [TBL] [Abstract][Full Text] [Related]
3. Relation of positive inotropic and chronotropic effects of pimobendan, UD-CG 212 Cl, milrinone and other phosphodiesterase inhibitors to phosphodiesterase III inhibition in guinea-pig heart. Brunkhorst D; v der Leyen H; Meyer W; Nigbur R; Schmidt-Schumacher C; Scholz H Naunyn Schmiedebergs Arch Pharmacol; 1989 May; 339(5):575-83. PubMed ID: 2549430 [TBL] [Abstract][Full Text] [Related]
4. Cyclic nucleotide phosphodiesterases from frog atrial fibers: isolation and drug sensitivities. Lugnier C; Gauthier C; Le Bec A; Soustre H Am J Physiol; 1992 Mar; 262(3 Pt 2):H654-60. PubMed ID: 1373036 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the phosphodiesterase inhibition by 2-(3-methoxy-5-methylsulfinyl-2-thienyl)-1H-imidazo-(4,5-c)-pyridine HCl and its sulfide- and sulfone derivatives in myocardial preparations from failing human hearts. Bethke T; Klimkiewicz A; Meyer W; Schumacher C; Schmitz W; Scholz H; Starbatty J; Wenzlaff H; Zimmermann W Arzneimittelforschung; 1995 Jul; 45(7):771-6. PubMed ID: 8573220 [TBL] [Abstract][Full Text] [Related]
6. The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea-pig cardiac ventricle. Implications for the mechanism of action of selective phosphodiesterase inhibitors. Reeves ML; Leigh BK; England PJ Biochem J; 1987 Jan; 241(2):535-41. PubMed ID: 3036066 [TBL] [Abstract][Full Text] [Related]
8. Suppression of eosinophil function by RP 73401, a potent and selective inhibitor of cyclic AMP-specific phosphodiesterase: comparison with rolipram. Souness JE; Maslen C; Webber S; Foster M; Raeburn D; Palfreyman MN; Ashton MJ; Karlsson JA Br J Pharmacol; 1995 May; 115(1):39-46. PubMed ID: 7647982 [TBL] [Abstract][Full Text] [Related]
10. The effect of cyclic AMP and cyclic GMP phosphodiesterase inhibitors on the superoxide burst of guinea-pig peritoneal macrophages. Turner NC; Wood LJ; Burns FM; Gueremy T; Souness JE Br J Pharmacol; 1993 Apr; 108(4):876-83. PubMed ID: 8387385 [TBL] [Abstract][Full Text] [Related]
11. Possible role of cyclic AMP phosphodiesterases in the actions of ibudilast on eosinophil thromboxane generation and airways smooth muscle tone. Souness JE; Villamil ME; Scott LC; Tomkinson A; Giembycz MA; Raeburn D Br J Pharmacol; 1994 Apr; 111(4):1081-8. PubMed ID: 8032594 [TBL] [Abstract][Full Text] [Related]
12. Differential effects of non-selective and selective phosphodiesterase inhibitors on human eosinophil functions. Hatzelmann A; Tenor H; Schudt C Br J Pharmacol; 1995 Feb; 114(4):821-31. PubMed ID: 7539697 [TBL] [Abstract][Full Text] [Related]
13. Effects of several newer cardiotonic drugs on cardiac cyclic AMP metabolism. Ahn HS; Eardley D; Watkins R; Prioli N Biochem Pharmacol; 1986 Apr; 35(7):1113-21. PubMed ID: 2421728 [TBL] [Abstract][Full Text] [Related]
14. Bemoradan--a novel inhibitor of the rolipram-insensitive cyclic AMP phosphodiesterase from canine heart tissue. Moore JB; Combs DW; Tobia AJ Biochem Pharmacol; 1991 Jul; 42(3):679-83. PubMed ID: 1650219 [TBL] [Abstract][Full Text] [Related]
15. Role of phosphodiesterase isoenzymes in regulating intracellular cyclic AMP in adenosine-stimulated smooth muscle cells. Xiong Y; Westhead EW; Slakey LL Biochem J; 1995 Jan; 305 ( Pt 2)(Pt 2):627-33. PubMed ID: 7832782 [TBL] [Abstract][Full Text] [Related]
16. Mechanism underlying the reduced positive inotropic effects of the phosphodiesterase III inhibitors pimobendan, adibendan and saterinone in failing as compared to nonfailing human cardiac muscle preparations. von der Leyen H; Mende U; Meyer W; Neumann J; Nose M; Schmitz W; Scholz H; Starbatty J; Stein B; Wenzlaff H Naunyn Schmiedebergs Arch Pharmacol; 1991 Jul; 344(1):90-100. PubMed ID: 1723153 [TBL] [Abstract][Full Text] [Related]
17. Stereospecificity of rolipram actions on eosinophil cyclic AMP-specific phosphodiesterase. Souness JE; Scott LC Biochem J; 1993 Apr; 291 ( Pt 2)(Pt 2):389-95. PubMed ID: 8387267 [TBL] [Abstract][Full Text] [Related]
18. The presence of five cyclic nucleotide phosphodiesterase isoenzyme activities in bovine tracheal smooth muscle and the functional effects of selective inhibitors. Shahid M; van Amsterdam RG; de Boer J; ten Berge RE; Nicholson CD; Zaagsma J Br J Pharmacol; 1991 Oct; 104(2):471-7. PubMed ID: 1665737 [TBL] [Abstract][Full Text] [Related]
19. Effects of a cardiotonic quinolinone derivative Y-20487 on the isoproterenol-induced positive inotropic action and cyclic AMP accumulation in rat ventricular myocardium: comparison with rolipram, Ro 20-1724, milrinone, and isobutylmethylxanthine. Katano Y; Endoh M J Cardiovasc Pharmacol; 1992; 20(5):715-22. PubMed ID: 1280732 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of pig aortic smooth muscle cell DNA synthesis by selective type III and type IV cyclic AMP phosphodiesterase inhibitors. Souness JE; Hassall GA; Parrott DP Biochem Pharmacol; 1992 Sep; 44(5):857-66. PubMed ID: 1326964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]