These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1385014)

  • 21. Topographic order of retinofugal axons in a marsupial: implications for map formation in visual nuclei.
    Dunlop SA; Tee LB; Beazley LD
    J Comp Neurol; 2000 Dec; 428(1):33-44. PubMed ID: 11058223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Location of retinal ganglion cells contributing to the early imprecision in the retinotopic order of the developing projection to the superior colliculus of the wallaby (Macropus eugenii).
    Marotte LR
    J Comp Neurol; 1993 May; 331(1):1-13. PubMed ID: 7686568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Postnatal development and specification of the cat's visual corticotectal projection: efferents from the posteromedial lateral suprasylvian area.
    Bruce LL
    Brain Res Dev Brain Res; 1993 May; 73(1):47-61. PubMed ID: 8390331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Early establishment of adult-like nigrotectal architecture in the neonatal cat: a double-labeling study using carbocyanine dyes.
    Gabriele ML; Smoot JE; Jiang H; Stein BE; McHaffie JG
    Neuroscience; 2006; 137(4):1309-19. PubMed ID: 16359814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Retinal ganglion cell axons recognize specific guidance cues present in the deafferented adult rat superior colliculus.
    Bähr M; Wizenmann A
    J Neurosci; 1996 Aug; 16(16):5106-16. PubMed ID: 8756440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo retinotopic mapping of superior colliculus using manganese-enhanced magnetic resonance imaging.
    Chan KC; Li J; Kau P; Zhou IY; Cheung MM; Lau C; Yang J; So KF; Wu EX
    Neuroimage; 2011 Jan; 54(1):389-95. PubMed ID: 20633657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct synaptic connections of axons from superior colliculus with identified thalamo-amygdaloid projection neurons in the rat: possible substrates of a subcortical visual pathway to the amygdala.
    Linke R; De Lima AD; Schwegler H; Pape HC
    J Comp Neurol; 1999 Jan; 403(2):158-70. PubMed ID: 9886041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The retinal projection to the superior colliculus in the cat: a quantitative study with HRP.
    Wässle H; Illing RB
    J Comp Neurol; 1980 Mar; 190(2):333-56. PubMed ID: 7381061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of prenatal and neonatal monocular enucleation on visual topography in the uncrossed retinal pathway to the rat superior colliculus.
    Jeffery G; Thompson ID
    Exp Brain Res; 1986; 63(2):351-63. PubMed ID: 3758252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Topographic organization in the retinocollicular pathway of the fetal cat demonstrated by retrograde labeling of ganglion cells.
    Chalupa LM; Snider CJ; Kirby MA
    J Comp Neurol; 1996 Apr; 368(2):295-303. PubMed ID: 8725308
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phr1 is required for proper retinocollicular targeting of nasal-dorsal retinal ganglion cells.
    Vo BQ; Bloom AJ; Culican SM
    Vis Neurosci; 2011 Mar; 28(2):175-81. PubMed ID: 21324225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A stochastic model for retinocollicular map development.
    Koulakov AA; Tsigankov DN
    BMC Neurosci; 2004 Aug; 5():30. PubMed ID: 15339341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rules for retinotectal terminal arborizations in the goldfish optic tectum: a whole-mount study.
    Stuermer CA
    J Comp Neurol; 1984 Oct; 229(2):214-32. PubMed ID: 6501601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse.
    Godement P; Salaün J; Imbert M
    J Comp Neurol; 1984 Dec; 230(4):552-75. PubMed ID: 6520251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata.
    Dunlop SA; Tee LB; Lund RD; Beazley LD
    J Comp Neurol; 1997 Jul; 384(1):26-40. PubMed ID: 9214538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Postnatal changes in arborization patterns of murine retinocollicular axons.
    Sachs GM; Jacobson M; Caviness VS
    J Comp Neurol; 1986 Apr; 246(3):395-408. PubMed ID: 3700722
    [TBL] [Abstract][Full Text] [Related]  

  • 37. N-methyl-D-aspartate receptor antagonists disrupt the formation of a mammalian neural map.
    Simon DK; Prusky GT; O'Leary DD; Constantine-Paton M
    Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10593-7. PubMed ID: 1359542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Axonal target choice and dendritic development of ferret beta retinal ganglion cells.
    Wingate RJ; Thompson ID
    Eur J Neurosci; 1995 Apr; 7(4):723-31. PubMed ID: 7620621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. L1 interaction with ankyrin regulates mediolateral topography in the retinocollicular projection.
    Buhusi M; Schlatter MC; Demyanenko GP; Thresher R; Maness PF
    J Neurosci; 2008 Jan; 28(1):177-88. PubMed ID: 18171935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Emergence of topography in the developing hamster retinocollicular projection: axial differences and the role of cell death.
    Upton AL; Cordery PM; Thompson ID
    Eur J Neurosci; 2007 Apr; 25(8):2319-28. PubMed ID: 17445230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.