These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 1385083)

  • 1. Automated interictal EEG spike detection using artificial neural networks.
    Gabor AJ; Seyal M
    Electroencephalogr Clin Neurophysiol; 1992 Nov; 83(5):271-80. PubMed ID: 1385083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SADE3: an effective system for automated detection of epileptiform events in long-term EEG based on context information.
    Argoud FI; De Azevedo FM; Neto JM; Grillo E
    Med Biol Eng Comput; 2006 Jun; 44(6):459-70. PubMed ID: 16937197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study on EEG signals data compression and spikes recognition with wavelet neural network].
    Yu A; Zhang Y; Yu K
    Zhongguo Yi Liao Qi Xie Za Zhi; 1998 Sep; 22(5):249-53. PubMed ID: 12078160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of epileptiform activities in the EEG using neural network and expert system.
    Park HS; Lee YH; Kim NG; Lee DS; Kim SI
    Stud Health Technol Inform; 1998; 52 Pt 2():1255-9. PubMed ID: 10384661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical detection of epileptiform discharges (EDs) in the EEG using an artificial neural network: a comparison of raw and parameterized EEG data.
    Webber WR; Litt B; Wilson K; Lesser RP
    Electroencephalogr Clin Neurophysiol; 1994 Sep; 91(3):194-204. PubMed ID: 7522148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast evaluation of interictal spikes in long-term EEG by hyper-clustering.
    Scherg M; Ille N; Weckesser D; Ebert A; Ostendorf A; Boppel T; Schubert S; Larsson PG; Henning O; Bast T
    Epilepsia; 2012 Jul; 53(7):1196-204. PubMed ID: 22578143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A wavelet neural network algorithm of EEG signals data compression and spikes recognition].
    Zhang Y; Liu A; Yu K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1999 Jun; 16(2):172-6. PubMed ID: 12552657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid annotation of interictal epileptiform discharges via template matching under Dynamic Time Warping.
    Jing J; Dauwels J; Rakthanmanon T; Keogh E; Cash SS; Westover MB
    J Neurosci Methods; 2016 Dec; 274():179-190. PubMed ID: 26944098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An artificial intelligence-based EEG algorithm for detection of epileptiform EEG discharges: Validation against the diagnostic gold standard.
    Fürbass F; Kural MA; Gritsch G; Hartmann M; Kluge T; Beniczky S
    Clin Neurophysiol; 2020 Jun; 131(6):1174-1179. PubMed ID: 32299000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multistage, multimethod approach for automatic detection and classification of epileptiform EEG.
    Liu HS; Zhang T; Yang FS
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1557-66. PubMed ID: 12549737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of seizure activity in EEG by an artificial neural network: a preliminary study.
    Pradhan N; Sadasivan PK; Arunodaya GR
    Comput Biomed Res; 1996 Aug; 29(4):303-13. PubMed ID: 8812076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neural-network-based detection of epilepsy.
    Nigam VP; Graupe D
    Neurol Res; 2004 Jan; 26(1):55-60. PubMed ID: 14977058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic recognition and characterization of epileptiform discharges in the human EEG.
    Frost JD
    J Clin Neurophysiol; 1985 Jul; 2(3):231-49. PubMed ID: 3916845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and non-epileptic intracranial recordings.
    Janca R; Jezdik P; Cmejla R; Tomasek M; Worrell GA; Stead M; Wagenaar J; Jefferys JG; Krsek P; Komarek V; Jiruska P; Marusic P
    Brain Topogr; 2015 Jan; 28(1):172-83. PubMed ID: 24970691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of algorithms for detection of spikes in the electroencephalogram.
    Pang CC; Upton AR; Shine G; Kamath MV
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):521-6. PubMed ID: 12723065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks.
    Acir N; Oztura I; Kuntalp M; Baklan B; Güzeliş C
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):30-40. PubMed ID: 15651562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epilepsy classification using optimized artificial neural network.
    Saini J; Dutta M
    Neurol Res; 2018 Nov; 40(11):982-994. PubMed ID: 30156138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern recognition of the electroencephalogram by artificial neural networks.
    Jandó G; Siegel RM; Horváth Z; Buzsáki G
    Electroencephalogr Clin Neurophysiol; 1993 Feb; 86(2):100-9. PubMed ID: 7681377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epileptic EEG detection using neural networks and post-classification.
    Patnaik LM; Manyam OK
    Comput Methods Programs Biomed; 2008 Aug; 91(2):100-9. PubMed ID: 18406490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of spikes with artificial neural networks using raw EEG.
    Ozdamar O; Kalayci T
    Comput Biomed Res; 1998 Apr; 31(2):122-42. PubMed ID: 9570903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.