These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 13851477)

  • 41. The mechanism of energy conservation in the mitochondrial respiratory chain.
    Slater EC
    Harvey Lect; 1971-1972; 66():19-42. PubMed ID: 4949246
    [No Abstract]   [Full Text] [Related]  

  • 42. Increased oxidative metabolism in the fetal and newborn lamb heart.
    Wells RJ; Friedman WF; Sobel BE
    Am J Physiol; 1972 Jun; 222(6):1488-93. PubMed ID: 4337787
    [No Abstract]   [Full Text] [Related]  

  • 43. CALCIUM ION ACCUMULATION AND VOLUME CHANGES OF ISOLATED LIVER MITOCHONDRIA. CALCIUM ION-INDUCED SWELLING.
    CHAPPELL JB; CROFTS AR
    Biochem J; 1965 May; 95(2):378-86. PubMed ID: 14340088
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The inhibition of pyruvate and Ls(+)-isocitrate oxidation by succinate oxidation in rat liver mitochondria.
    König T; Nicholls DG; Garland PB
    Biochem J; 1969 Sep; 114(3):589-96. PubMed ID: 4309530
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetic analysis of changes in activity of heart mitochondrial oxidative phosphorylation system induced by ischemia.
    Borutaite V; Morkuniene R; Budriunaite A; Krasauskaite D; Ryselis S; Toleikis A; Brown GC
    J Mol Cell Cardiol; 1996 Oct; 28(10):2195-201. PubMed ID: 8930814
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ON THE MECHANISM OF OXIDATIVE PHOSPHORYLATION. VII. THE ENERGY-REQUIRING REDUCTION OF PYRIDINE NUCLEOTIDE BY SUCCINATE AND THE ENERGY-YIELDING OXIDATION OF REDUCED PYRIDINE NUCLEOTIDE BY FUMARATE.
    SANADI DR; FLUHARTY AL
    Biochemistry; 1963; 2():523-8. PubMed ID: 14069541
    [No Abstract]   [Full Text] [Related]  

  • 47. Unequal charge separation by different coupling spans of the mitochondrial electron transport chain.
    Brand MD; Harper WG; Nicholls DG; Ingledew WJ
    FEBS Lett; 1978 Nov; 95(1):125-9. PubMed ID: 720593
    [No Abstract]   [Full Text] [Related]  

  • 48. Studies on the stabilization of an oxidative phosphorylation system. I. Resistance of a phosphorylating system of submitochondrial particles to trypsin, due to phosphorylation of ADP.
    Luzikov VN; Saks VA; Kupriyanov VV
    Biochim Biophys Acta; 1971 Nov; 253(1):46-57. PubMed ID: 4331272
    [No Abstract]   [Full Text] [Related]  

  • 49. [RESPIRATORY CHAIN PHOSPHORYLATION AND MITOCHONDRIAL STRUCTURE FOLLOWING ANOXIC HEART ARREST].
    WEDELL J; MERKER HJ
    Verh Dtsch Ges Kreislaufforsch; 1964; 30():201-5. PubMed ID: 14271647
    [No Abstract]   [Full Text] [Related]  

  • 50. Inhibition of oxidative phosphorylation by hydroxylamine in sonicated particles from beef-heart mitochondria.
    Wikström MK
    Biochim Biophys Acta; 1971 Apr; 234(1):16-27. PubMed ID: 4327077
    [No Abstract]   [Full Text] [Related]  

  • 51. Preparation of intaintact plant mitochondria.
    Douce R; Christensen EL; Bonner WD
    Biochim Biophys Acta; 1972 Aug; 275(2):148-60. PubMed ID: 4342337
    [No Abstract]   [Full Text] [Related]  

  • 52. Energy linked NAD reduction in phophorylating submitochondrial particles from heavy layer beef heart mitochondria. A lag phenomenon and its localization.
    Schuurmans Stekhoven FM; Sani BP; Sanadi DR
    Biochem Biophys Res Commun; 1970; 39(6):1026-30. PubMed ID: 4327299
    [No Abstract]   [Full Text] [Related]  

  • 53. Studies of oxidative energy deficiency. I. Achondroplasia in the rabbit.
    Bargman GJ; Mackler B; Shepard TH
    Arch Biochem Biophys; 1972 May; 150(1):137-46. PubMed ID: 4337533
    [No Abstract]   [Full Text] [Related]  

  • 54. [Relation among the biochemical changes and mitochondrial ultrastructures of the heart with experimental infarct].
    Calva E; Trillo A; Núñez R; Aoki K; Ariza D
    Arch Inst Cardiol Mex; 1969; 39(5):696-712. PubMed ID: 4392149
    [No Abstract]   [Full Text] [Related]  

  • 55. [Utilization of succinate in the myocardial mitochondria in parallel artificial circulation].
    Tsyganiĭ AA; Rudichenko VF; Ovrutskaia ZG; Vovchenko OI
    Grudn Khir; 1974; (6):65-7. PubMed ID: 4448399
    [No Abstract]   [Full Text] [Related]  

  • 56. Mitochondrial functions under hypoxic conditions. The steady states of cytochrome c reduction and of energy metabolism.
    Sugano T; Oshino N; Chance B
    Biochim Biophys Acta; 1974 Jun; 347(3):340-58. PubMed ID: 4366888
    [No Abstract]   [Full Text] [Related]  

  • 57. Substrate transformations dependent on respiratory states of mitochondria. Functional status and metabolic changes in rabbit heart mitochondria during pyruvate oxidation.
    Schäfer G; Balde P; Lamprecht W
    Nature; 1967 Apr; 214(5083):20-3. PubMed ID: 6033333
    [No Abstract]   [Full Text] [Related]  

  • 58. [Reversed electron transfer and parallel changes in the SH-group content of mitochondria after addition of cysteine].
    Vinogradov AD; Nikolaeva LV; Ozrina RD; Kondrashova MN
    Biokhimiia; 1966; 31(3):501-6. PubMed ID: 4299362
    [No Abstract]   [Full Text] [Related]  

  • 59. Effects of iproveratril on isolated heart mitochondria.
    Silveira O; Campello AP
    Res Commun Chem Pathol Pharmacol; 1975 Jan; 10(1):149-54. PubMed ID: 235776
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Terminal respiration in minute mutants of Drosophila.
    Farnsworth MW; Jozwiak J
    J Exp Zool; 1969 May; 171(1):119-26. PubMed ID: 4310340
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.