These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 1385260)
1. Hormones regulating hepatic glycogenolysis in two chelonians use cyclic AMP, and not Ca2+, as intracellular messenger. Janssens PA; Grigg JA Gen Comp Endocrinol; 1992 Oct; 88(1):117-27. PubMed ID: 1385260 [TBL] [Abstract][Full Text] [Related]
2. Binding of adrenergic ligands to liver plasma membrane preparations from the axolotl, Ambystoma mexicanum; the toad, Xenopus laevis; and the Australian lungfish, Neoceratodus forsteri. Janssens PA; Grigg JA Gen Comp Endocrinol; 1988 Sep; 71(3):524-30. PubMed ID: 2847957 [TBL] [Abstract][Full Text] [Related]
3. Hormonal regulation of hepatic glycogenolysis in the carp, Cyprinus carpio. Janssens PA; Lowrey P Am J Physiol; 1987 Apr; 252(4 Pt 2):R653-60. PubMed ID: 3032003 [TBL] [Abstract][Full Text] [Related]
4. Hormonal control of glycogenolysis and the mechanism of action of adrenaline in amphibian liver in vitro. Janssens PA; Caine AG; Dixon JE Gen Comp Endocrinol; 1983 Mar; 49(3):477-84. PubMed ID: 6301936 [TBL] [Abstract][Full Text] [Related]
5. Studies on the alpha-adrenergic activation of hepatic glucose output. I. Studies on the alpha-adrenergic activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase in isolated rat liver parenchymal cells. Hutson NJ; Brumley FT; Assimacopoulos FD; Harper SC; Exton JH J Biol Chem; 1976 Sep; 251(17):5200-8. PubMed ID: 8456 [TBL] [Abstract][Full Text] [Related]
6. Studies on alpha-adrenergic activation of hepatic glucose output. Studies on role of calcium in alpha-adrenergic activation of phosphorylase. Assimacopoulos-Jeannet FD; Blackmore PF; Exton JH J Biol Chem; 1977 Apr; 252(8):2662-9. PubMed ID: 323250 [TBL] [Abstract][Full Text] [Related]
7. Hormonal stimulation of cyclic AMP accumulation and glycogen phosphorylase activity in calcium-depleted hepatocytes from euthyroid and hypothyroid rats. Malbon CC; Gilman HR; Fain JN Biochem J; 1980 Jun; 188(3):593-9. PubMed ID: 6258557 [TBL] [Abstract][Full Text] [Related]
8. On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase. Keppens S; Vandenheede JR; De Wulf H Biochim Biophys Acta; 1977 Feb; 496(2):448-57. PubMed ID: 189844 [TBL] [Abstract][Full Text] [Related]
9. Glycogenolytic effects of the calcium ionophore A23187, but not of vasopressin or angiotensin, in foetal-rat hepatocytes. Freemark M; Handwerger S Biochem J; 1984 Jun; 220(2):441-5. PubMed ID: 6430282 [TBL] [Abstract][Full Text] [Related]
10. Maturation and secretion of rat hepatic lipase is inhibited by alpha1B-adrenergic stimulation through changes in Ca2+ homoeostasis: thapsigargin and EGTA both mimic the effect of adrenaline. Neve BP; Verhoeven AJ; Kalkman I; Jansen H Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):701-6. PubMed ID: 9480878 [TBL] [Abstract][Full Text] [Related]
11. Hormonal regulation of hepatic glycogenolysis in the toad, Xenopus laevis, is mediated by cyclic AMP and not Ca2+. Janssens PA; Grigg JA Gen Comp Endocrinol; 1987 Aug; 67(2):227-33. PubMed ID: 3040519 [TBL] [Abstract][Full Text] [Related]
13. Calcium-independent stimulation of glycogenolysis by arginine vasotocin and catecholamines in liver of the axolotl (Ambystoma mexicanum) in vitro. Janssens PA; Kleineke J; Caine AG J Endocrinol; 1986 Apr; 109(1):75-84. PubMed ID: 3701246 [TBL] [Abstract][Full Text] [Related]
14. Studies on the role of cyclic guanosine 3':5'-monophosphate and extracellular Ca2+ in the regulation of glycogenolysis in rat liver cells. Pointer RH; Butcher FR; Fain JN J Biol Chem; 1976 May; 251(10):2987-92. PubMed ID: 178660 [TBL] [Abstract][Full Text] [Related]
15. Characterization of glucagon and catecholamine effects on isolated sheep hepatocytes. Morand C; Yacoub C; Remesy C; Demigne C Am J Physiol; 1988 Oct; 255(4 Pt 2):R539-46. PubMed ID: 2459977 [TBL] [Abstract][Full Text] [Related]
16. Interaction between adrenaline and epidermal growth factor in the control of liver glycogenolysis in mouse. Grau M; Soley M; RamÃrez I Endocrinology; 1997 Jun; 138(6):2601-9. PubMed ID: 9165054 [TBL] [Abstract][Full Text] [Related]
17. Role of cyclic AMP in the actions of catecholamines on hepatic carbohydrate metabolism. Exton JH; Harper SC Adv Cyclic Nucleotide Res; 1975; 5():519-32. PubMed ID: 165683 [TBL] [Abstract][Full Text] [Related]
18. Adrenergic regulation of glycogenolysis in liver of Xenopus laevis in vitro. Janssens PA; Grigg JA Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 77(2):403-8. PubMed ID: 6144450 [TBL] [Abstract][Full Text] [Related]
19. Activation of protein kinase and glycogen phosphorylase in isolated rat liver cells by glucagon and catecholamines. Birnbaum MJ; Fain JN J Biol Chem; 1977 Jan; 252(2):528-35. PubMed ID: 188818 [TBL] [Abstract][Full Text] [Related]
20. Effect of E-series prostaglandins on cyclic AMP-dependent and -independent hormone-stimulated glycogenolysis in hepatocytes. Brass EP; Garrity MJ Diabetes; 1985 Mar; 34(3):291-4. PubMed ID: 2982682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]