These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1385348)

  • 1. Bacterial periplasmic permeases as model systems for the superfamily of traffic ATPases, including the multidrug resistance protein and the cystic fibrosis transmembrane conductance regulator.
    Ames GF
    Int Rev Cytol; 1992; 137():1-35. PubMed ID: 1385348
    [No Abstract]   [Full Text] [Related]  

  • 2. Bacterial periplasmic permeases as model systems for multidrug resistance (MDR) and the cystic fibrosis transmembrane conductance regulator (CFTR).
    Ames GF
    Soc Gen Physiol Ser; 1993; 48():77-94. PubMed ID: 7684868
    [No Abstract]   [Full Text] [Related]  

  • 3. Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases.
    Ames GF; Mimura CS; Shyamala V
    FEMS Microbiol Rev; 1990 Aug; 6(4):429-46. PubMed ID: 2147378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function analysis of the histidine permease and comparison with cystic fibrosis mutations.
    Shyamala V; Baichwal V; Beall E; Ames GF
    J Biol Chem; 1991 Oct; 266(28):18714-9. PubMed ID: 1717452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ATP-binding component of a prokaryotic traffic ATPase is exposed to the periplasmic (external) surface.
    Baichwal V; Liu D; Ames GF
    Proc Natl Acad Sci U S A; 1993 Jan; 90(2):620-4. PubMed ID: 7678461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance.
    Doige CA; Ames GF
    Annu Rev Microbiol; 1993; 47():291-319. PubMed ID: 7504904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural model of the nucleotide-binding conserved component of periplasmic permeases.
    Mimura CS; Holbrook SR; Ames GF
    Proc Natl Acad Sci U S A; 1991 Jan; 88(1):84-8. PubMed ID: 1986384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the ATP-binding subunit of an ABC transporter.
    Hung LW; Wang IX; Nikaido K; Liu PQ; Ames GF; Kim SH
    Nature; 1998 Dec; 396(6712):703-7. PubMed ID: 9872322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-dependent bacterial transporters and cystic fibrosis: analogy between channels and transporters.
    Ames GF; Lecar H
    FASEB J; 1992 Jun; 6(9):2660-6. PubMed ID: 1377140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bacterial system for investigating transport effects of cystic fibrosis--associated mutations.
    Gibson AL; Wagner LM; Collins FS; Oxender DL
    Science; 1991 Oct; 254(5028):109-11. PubMed ID: 1718037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional roles of the nucleotide-binding folds in the activation of the cystic fibrosis transmembrane conductance regulator.
    Smit LS; Wilkinson DJ; Mansoura MK; Collins FS; Dawson DC
    Proc Natl Acad Sci U S A; 1993 Nov; 90(21):9963-7. PubMed ID: 7694298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cystic fibrosis transmembrane conductance regulator: the first nucleotide binding fold targets the membrane with retention of its ATP binding function.
    Ko YH; Delannoy M; Pedersen PL
    Biochemistry; 1997 Apr; 36(16):5053-64. PubMed ID: 9125527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Mdr50: a Drosophila P-glycoprotein/multidrug resistance gene homolog.
    Gerrard B; Stewart C; Dean M
    Genomics; 1993 Jul; 17(1):83-8. PubMed ID: 7691715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand conduction and the gated-pore mechanism of transmembrane transport.
    West IC
    Biochim Biophys Acta; 1997 Nov; 1331(3):213-34. PubMed ID: 9512653
    [No Abstract]   [Full Text] [Related]  

  • 15. Engineering peptide inhibitors to overcome PDZ binding promiscuity.
    Vouilleme L; Cushing PR; Volkmer R; Madden DR; Boisguerin P
    Angew Chem Int Ed Engl; 2010 Dec; 49(51):9912-6. PubMed ID: 21105032
    [No Abstract]   [Full Text] [Related]  

  • 16. TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria.
    Forward JA; Behrendt MC; Wyborn NR; Cross R; Kelly DJ
    J Bacteriol; 1997 Sep; 179(17):5482-93. PubMed ID: 9287004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of a transmembrane drug-efflux pump from Gram-negative bacteria.
    Fernandez-Recio J; Walas F; Federici L; Venkatesh Pratap J; Bavro VN; Miguel RN; Mizuguchi K; Luisi B
    FEBS Lett; 2004 Dec; 578(1-2):5-9. PubMed ID: 15581607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane topology of the Escherichia coli gamma-aminobutyrate transporter: implications on the topography and mechanism of prokaryotic and eukaryotic transporters from the APC superfamily.
    Hu LA; King SC
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):69-76. PubMed ID: 9806886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system.
    Schneider R; Hantke K
    Mol Microbiol; 1993 Apr; 8(1):111-21. PubMed ID: 8388528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria.
    Dinh T; Paulsen IT; Saier MH
    J Bacteriol; 1994 Jul; 176(13):3825-31. PubMed ID: 8021163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.