BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1385781)

  • 1. The catalytic site is located on subunit I of the ATPase from Halobacterium saccharovorum. A direct photoaffinity labeling study.
    Bonet ML; Schobert B
    Eur J Biochem; 1992 Jul; 207(1):369-76. PubMed ID: 1385781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide-protectable labeling of sulfhydryl groups in subunit I of the ATPase from Halobacterium saccharovorum.
    Sulzner M; Stan-Lotter H; Hochstein LI
    Arch Biochem Biophys; 1992 Jul; 296(1):347-9. PubMed ID: 1534982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. F1-like properties of an ATPase from the archaebacterium Halobacterium saccharovorum.
    Schobert B
    J Biol Chem; 1991 May; 266(13):8008-14. PubMed ID: 1827114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The binding of a second divalent metal ion is necessary for the activation of ATP hydrolysis and its inhibition by tightly bound ADP in the ATPase from Halobacterium saccharovorum.
    Schobert B
    J Biol Chem; 1992 May; 267(15):10252-7. PubMed ID: 1534083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of mitochondrial F1-ATPase with trinitrophenyl derivatives of ATP. Photoaffinity labeling of binding sites with 2-azido-2',3'-O-(4,6-trinitrophenyl)adenosine 5'-triphosphate.
    Murataliev MB
    Eur J Biochem; 1995 Sep; 232(2):578-85. PubMed ID: 7556210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The purification and subunit structure of a membrane-bound ATPase from the Archaebacterium Halobacterium saccharovorum.
    Hochstein LI; Kristjansson H; Altekar W
    Biochem Biophys Res Commun; 1987 Aug; 147(1):295-300. PubMed ID: 2888461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoaffinity labeling of mitochondrial adenosinetriphosphatase by 2-azidoadenosine 5'-[alpha-32P]diphosphate.
    Boulay F; Dalbon P; Vignais PV
    Biochemistry; 1985 Dec; 24(25):7372-9. PubMed ID: 2867780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship of the membrane ATPase from Halobacterium saccharovorum to vacuolar ATPases.
    Stan-Lotter H; Bowman EJ; Hochstein LI
    Arch Biochem Biophys; 1991 Jan; 284(1):116-9. PubMed ID: 1824911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP synthesis in Halobacterium saccharovorum: evidence that synthesis may be catalysed by an F0F1-ATP synthase.
    Hochstein LI
    FEMS Microbiol Lett; 1992 Oct; 76(1-2):155-9. PubMed ID: 11537859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tightly bound 2-azido-adenine nucleotides at catalytic and noncatalytic sites of the rat liver F1 ATPase label adjacent tryptic peptides of the beta subunit.
    Guerrero KJ; Boyer PD
    Biochem Biophys Res Commun; 1988 Aug; 154(3):854-60. PubMed ID: 2900637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloroplast F1 ATPase has more than three nucleotide binding sites, and 2-azido-ADP or 2-azido-ATP at both catalytic and noncatalytic sites labels the beta subunit.
    Xue ZX; Zhou JM; Melese T; Cross RL; Boyer PD
    Biochemistry; 1987 Jun; 26(13):3749-53. PubMed ID: 2888481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+.
    Wu D; Boyer PD
    Biochemistry; 1986 Jun; 25(11):3390-6. PubMed ID: 2873834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping of nucleotide-depleted mitochondrial F1-ATPase with 2-azido-[alpha-32P]adenosine diphosphate. Evidence for two nucleotide binding sites in the beta subunit.
    Lunardi J; Garin J; Issartel JP; Vignais PV
    J Biol Chem; 1987 Nov; 262(31):15172-81. PubMed ID: 2889735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do ATP4- and Mg2+ bind stepwise to the F1-ATPase of Halobacterium saccharovorum?
    Schobert B
    Eur J Biochem; 1998 Jun; 254(2):363-70. PubMed ID: 9660192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition and labeling of the coated vesicle V-ATPase by 2-azido-[32P]ATP.
    Zhang J; Vasilyeva E; Feng Y; Forgac M
    J Biol Chem; 1995 Jun; 270(26):15494-500. PubMed ID: 7797542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactions of a fluorescent ATP analog, 2'-(5-dimethyl-aminonaphthalene-1-sulfonyl) amino-2'-deoxyATP, with E. coli F1-ATPase and its subunits: the roles of the high affinity binding site in the alpha subunit and the low affinity binding site in the beta subunit.
    Matsuoka I; Takeda K; Futai M; Tonomura Y
    J Biochem; 1982 Nov; 92(5):1383-98. PubMed ID: 6218158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenine nucleotide binding at a noncatalytic site of mitochondrial F1-ATPase accelerates a Mg(2+)- and ADP-dependent inactivation during ATP hydrolysis.
    Murataliev MB
    Biochemistry; 1992 Dec; 31(51):12885-92. PubMed ID: 1463756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of two exchangeable non-catalytic and two cooperative catalytic sites in isolated bovine heart mitochondrial F1, using the photoaffinity labels [2-3H]8-azido-ATP and [2-3H]8-azido-ADP.
    van Dongen MB; Berden JA
    Biochim Biophys Acta; 1986 Jun; 850(1):121-30. PubMed ID: 2871864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides.
    Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E
    Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Functions and localization of nucleotide-binding sites of CF1-ATPase using dialdehyde derivatives of ADP and ATP].
    Sytnik SK; Mal'ian AN
    Biokhimiia; 1983 Jun; 48(6):890-6. PubMed ID: 6224516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.