BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 1385979)

  • 1. F-type or V-type? The chimeric nature of the archaebacterial ATP synthase.
    Schäfer G; Meyering-Vos M
    Biochim Biophys Acta; 1992 Jul; 1101(2):232-5. PubMed ID: 1385979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M; Schäfer G
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the catalytic nucleotide-binding subunit A of A-type ATP synthase from Pyrococcus horikoshii reveals a novel domain related to the peripheral stalk.
    Maegawa Y; Morita H; Iyaguchi D; Yao M; Watanabe N; Tanaka I
    Acta Crystallogr D Biol Crystallogr; 2006 May; 62(Pt 5):483-8. PubMed ID: 16627940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The stabilizing residues and the functional domains in the hyperthermophilic V-ATPase of Desulfurococcus.
    Shibui H; Hamamoto T; Yohda M; Kagawa Y
    Biochem Biophys Res Commun; 1997 May; 234(2):341-5. PubMed ID: 9177272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. F-and V-ATPases in the genus Thermus and related species.
    Radax C; Sigurdsson O; Hreggvidsson GO; Aichinger N; Gruber C; Kristjansson JK; Stan-Lotter H
    Syst Appl Microbiol; 1998 Mar; 21(1):12-22. PubMed ID: 9741106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuolar and plasma membrane proton-adenosinetriphosphatases.
    Nelson N; Harvey WR
    Physiol Rev; 1999 Apr; 79(2):361-85. PubMed ID: 10221984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Archaebacterial ATPases: relationship to other ion-translocating ATPase families examined in terms of immunological cross-reactivity.
    Konishi J; Denda K; Oshima T; Wakagi T; Uchida E; Ohsumi Y; Anraku Y; Matsumoto T; Wakabayashi T; Mukohata Y
    J Biochem; 1990 Oct; 108(4):554-9. PubMed ID: 1963431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide sequence of the ATPase A- and B-subunits of the halophilic archaebacterium Haloferax volcanii and characterization of the enzyme.
    Steinert K; Kroth-Pancic PG; Bickel-Sandkötter S
    Biochim Biophys Acta; 1995 Jun; 1249(2):137-44. PubMed ID: 7599166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The membrane-associated ATPase from Sulfolobus acidocaldarius is distantly related to F1-ATPase as assessed from the primary structure of its alpha-subunit.
    Denda K; Konishi J; Oshima T; Date T; Yoshida M
    J Biol Chem; 1988 May; 263(13):6012-5. PubMed ID: 2896191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotary Ion-Translocating ATPases/ATP Synthases: Diversity, Similarities, and Differences.
    Zubareva VM; Lapashina AS; Shugaeva TE; Litvin AV; Feniouk BA
    Biochemistry (Mosc); 2020 Dec; 85(12):1613-1630. PubMed ID: 33705299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary links between FliH/YscL-like proteins from bacterial type III secretion systems and second-stalk components of the FoF1 and vacuolar ATPases.
    Pallen MJ; Bailey CM; Beatson SA
    Protein Sci; 2006 Apr; 15(4):935-41. PubMed ID: 16522800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The halobacterial H+-translocating ATP synthase relates to the eukaryotic anion-sensitive H+-ATPase.
    Mukohata Y; Ihara K; Yoshida M; Konishi J; Sugiyama Y; Yoshida M
    Arch Biochem Biophys; 1987 Dec; 259(2):650-3. PubMed ID: 2892466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. F-type ATPases: are nucleotide domains in adenylate kinase appropriate models for nucleotide domains in ATP synthase/ATPase complexes?
    Pedersen PL; Thomas PJ; Garboczi DN; Bianchet M; Amzel LM
    Ann N Y Acad Sci; 1992 Nov; 671():359-65. PubMed ID: 1288332
    [No Abstract]   [Full Text] [Related]  

  • 14. The vacuolar H(+)-ATPase--one of the most fundamental ion pumps in nature.
    Nelson N
    J Exp Biol; 1992 Nov; 172():19-27. PubMed ID: 1337091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanochemistry of V-ATPase proton pumps.
    Grabe M; Wang H; Oster G
    Biophys J; 2000 Jun; 78(6):2798-813. PubMed ID: 10827963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide-binding sites in V-type Na+-ATPase from Enterococcus hirae.
    Murata T; Yoshikawa Y; Hosaka T; Takase K; Kakinuma Y; Yamato I; Kikuchi T
    J Biochem; 2002 Nov; 132(5):789-94. PubMed ID: 12417030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolution of A-, F-, and V-type ATP synthases and ATPases: reversals in function and changes in the H+/ATP coupling ratio.
    Cross RL; Müller V
    FEBS Lett; 2004 Oct; 576(1-2):1-4. PubMed ID: 15473999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Fo-ATPase generates rotary torque.
    Oster G; Wang H; Grabe M
    Philos Trans R Soc Lond B Biol Sci; 2000 Apr; 355(1396):523-8. PubMed ID: 10836505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The vacuolar H+-ATPase: a universal proton pump of eukaryotes.
    Finbow ME; Harrison MA
    Biochem J; 1997 Jun; 324 ( Pt 3)(Pt 3):697-712. PubMed ID: 9210392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the vacuolar adenosine triphosphatases.
    Wilkens S
    Cell Biochem Biophys; 2001; 34(2):191-208. PubMed ID: 11898864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.