BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 1385983)

  • 1. Surface-immobilized polyethylene oxide for bacterial repellence.
    Desai NP; Hossainy SF; Hubbell JA
    Biomaterials; 1992; 13(7):417-20. PubMed ID: 1385983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of plasma on adhesion of biofilm forming Pseudomonas aeruginosa and Staphylococcus epidermidis to fibrin substrate.
    Benson DE; Burns GL; Mohammad SF
    ASAIO J; 1996; 42(5):M655-60. PubMed ID: 8944962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue response to intraperitoneal implants of polyethylene oxide-modified polyethylene terephthalate.
    Desai NP; Hubbell JA
    Biomaterials; 1992; 13(8):505-10. PubMed ID: 1385984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of staphylococcal adhesion to polystyrene surfaces by polymer surface modification with surfactants.
    Bridgett MJ; Davies MC; Denyer SP
    Biomaterials; 1992; 13(7):411-6. PubMed ID: 1633214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. No lower bacterial adhesion for ceramics compared to other biomaterials: An in vitro analysis.
    Slullitel PA; Buttaro MA; Greco G; Oñativia JI; Sánchez ML; Mc Loughlin S; García-Ávila C; Comba F; Zanotti G; Piccaluga F
    Orthop Traumatol Surg Res; 2018 Jun; 104(4):439-443. PubMed ID: 29581066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophoretic deposition of MgO nanoparticles imparts antibacterial properties to poly-L-lactic acid for orthopedic applications.
    Hickey DJ; Muthusamy D; Webster TJ
    J Biomed Mater Res A; 2017 Nov; 105(11):3136-3147. PubMed ID: 28782240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers.
    Wagner VE; Koberstein JT; Bryers JD
    Biomaterials; 2004 May; 25(12):2247-63. PubMed ID: 14741590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The effect of surface free energy parameters of diamond-like carbon films deposited on medical polyethylene terephthalate on bacterial adhesion].
    Wang J; Pan C; Li P; Leng Y; Chen J; Wan G; Yang P; Sun H; Huang N
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):342-5. PubMed ID: 16706362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Alloplastic Materials and their Propensity to Bacterial Colonisation].
    Ballay R; Landor I; Růžička F; Melicherčík P; Tomaides J; Jahoda D
    Acta Chir Orthop Traumatol Cech; 2016; 83(3):163-8. PubMed ID: 27484073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesion of Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa onto nanohydroxyapatite as a bone regeneration material.
    Grenho L; Manso MC; Monteiro FJ; Ferraz MP
    J Biomed Mater Res A; 2012 Jul; 100(7):1823-30. PubMed ID: 22489063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of some plasma proteins on in vitro bacterial adherence to PTFE and Dacron vascular prostheses.
    Zdanowski Z; Ribbe E; Schalén C
    APMIS; 1993 Dec; 101(12):926-32. PubMed ID: 8110449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiadhesive activity of ulvan polysaccharides covalently immobilized onto titanium surface.
    Gadenne V; Lebrun L; Jouenne T; Thebault P
    Colloids Surf B Biointerfaces; 2013 Dec; 112():229-36. PubMed ID: 23994748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional network-structured film coating for woven and knitted polyethylene terephthalate against cardiovascular graft-associated infections.
    Al Meslmani BM; Mahmoud GF; Sommer FO; Lohoff MD; Bakowsky U
    Int J Pharm; 2015 May; 485(1-2):270-6. PubMed ID: 25796119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of amorphous carbon films deposited on polyethylene terephthalate on bacterial adhesion.
    Wang J; Huang N; Yang P; Leng YX; Sun H; Liu ZY; Chu PK
    Biomaterials; 2004 Jul; 25(16):3163-70. PubMed ID: 14980411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(ethylene glycol)-polyacrylate copolymers modified to control adherent monocyte-macrophage physiology: interactions with attaching Staphylococcus epidermidis or Pseudomonas aeruginosa bacteria.
    Wagner VE; Bryers JD
    J Biomed Mater Res A; 2004 Apr; 69(1):79-90. PubMed ID: 14999754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo comparative colonization of Staphylococcus aureus and Staphylococcus epidermidis on orthopaedic implant materials.
    Barth E; Myrvik QM; Wagner W; Gristina AG
    Biomaterials; 1989 Jul; 10(5):325-8. PubMed ID: 2765629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial adhesion to orthopedic implant polymers.
    Barton AJ; Sagers RD; Pitt WG
    J Biomed Mater Res; 1996 Mar; 30(3):403-10. PubMed ID: 8698704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S. epidermidis biofilm formation: effects of biomaterial surface chemistry and serum proteins.
    Patel JD; Ebert M; Ward R; Anderson JM
    J Biomed Mater Res A; 2007 Mar; 80(3):742-51. PubMed ID: 17177270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in vitro and in vivo study on the intensity of adhesion and colonization by Staphylococcus epidermidis and Pseudomonas aeruginosa on originally synthesized biomaterials with different chemical composition and modified surfaces and their effect on expression of TNF-α, β-defensin 2 and IL-10 in tissues.
    Reinis A; Pilmane M; Stunda A; Vētra J; Kroiča J; Rostoka D; Salms G; Vostroilovs A; Dons A; Bērziņa-Cimdiņa L
    Medicina (Kaunas); 2011; 47(10):560-5. PubMed ID: 22186120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the shear force at the balance between bacterial attachment and detachment in weak-adherence systems, using a flow displacement chamber.
    Nejadnik MR; van der Mei HC; Busscher HJ; Norde W
    Appl Environ Microbiol; 2008 Feb; 74(3):916-9. PubMed ID: 18065607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.