These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1385984)

  • 1. Tissue response to intraperitoneal implants of polyethylene oxide-modified polyethylene terephthalate.
    Desai NP; Hubbell JA
    Biomaterials; 1992; 13(8):505-10. PubMed ID: 1385984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-immobilized polyethylene oxide for bacterial repellence.
    Desai NP; Hossainy SF; Hubbell JA
    Biomaterials; 1992; 13(7):417-20. PubMed ID: 1385983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo and in vitro responses to poly(ethylene terephthalate-co-diethylene glycol terephthalate) and polyethylene oxide blends.
    Barcellos IO; Carobrez SG; Pires AT; Alvarez-Silva M
    Biomaterials; 1998 Nov; 19(22):2075-82. PubMed ID: 9870759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo modulation of foreign body response on polyurethane by surface entrapment technique.
    Khandwekar AP; Patil DP; Hardikar AA; Shouche YS; Doble M
    J Biomed Mater Res A; 2010 Nov; 95(2):413-23. PubMed ID: 20648535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces.
    Desai NP; Hubbell JA
    J Biomed Mater Res; 1991 Jul; 25(7):829-43. PubMed ID: 1833405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of surface-coupled polyethylene oxide on human macrophage adhesion and foreign body giant cell formation in vitro.
    Jenney CR; Anderson JM
    J Biomed Mater Res; 1999 Feb; 44(2):206-16. PubMed ID: 10397922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introduction of polyethylene terephthalate mesh (KoSa hochfest) for abdominal hernia repair: an animal experimental study.
    Zieren J; Neuss H; Paul M; Müller J
    Biomed Mater Eng; 2004; 14(2):127-32. PubMed ID: 15156103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of plasma fibronectin in the foreign body response to biomaterials.
    Keselowsky BG; Bridges AW; Burns KL; Tate CC; Babensee JE; LaPlaca MC; García AJ
    Biomaterials; 2007 Sep; 28(25):3626-31. PubMed ID: 17521718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of plasma modification on biological properties of polyethylene terephthalate foil].
    Staniszewska-Kuś J; Paluch D; Szymonowicz M; Pigłowski J; Gancarz I
    Polim Med; 1994; 24(1-2):3-19. PubMed ID: 7971532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Alloplastic ligament replacement. A study of the biological fixation of 5 non-resorbable materials].
    Weckbach A; Kunz E; Kirchner T
    Unfallchirurg; 1990 Aug; 93(8):380-3. PubMed ID: 2144058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biocompatibility of sulfobetaine engineered poly (ethylene terephthalate) by surface entrapment technique.
    Khandwekar AP; Doble M; Patil DP; Shouche YS
    J Biomater Appl; 2010 Aug; 25(2):119-43. PubMed ID: 19749001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials.
    Desai NP; Hubbell JA
    Biomaterials; 1991 Mar; 12(2):144-53. PubMed ID: 1831675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sterilization on non-woven polyethylene terephthalate fiber structures for vascular grafts.
    Dimitrievska S; Petit A; Doillon CJ; Epure L; Ajji A; Yahia L; Bureau MN
    Macromol Biosci; 2011 Jan; 11(1):13-21. PubMed ID: 21038349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological response of the peritoneum and spleen to intraperitoneal biomaterials.
    Guo W; Willén R; Andersson R; Pärsson H; Liu X; Johansson K; Bengmark S
    Int J Artif Organs; 1993 May; 16(5):276-84. PubMed ID: 8354587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron microscope investigation of soft tissue ingrowth into Dacron velour with dogs.
    Feldman DS; Hultman SM; Colaizzo RS; von Recum AF
    Biomaterials; 1983 Apr; 4(2):105-11. PubMed ID: 6222772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatibility of a polyether urethane, polypropylene oxide, and a polyether polyester copolymer. A qualitative and quantitative study of three alloplastic tympanic membrane materials in the rat middle ear.
    Bakker D; van Blitterswijk CA; Hesseling SC; Koerten HK; Kuijpers W; Grote JJ
    J Biomed Mater Res; 1990 Apr; 24(4):489-515. PubMed ID: 2347874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of microgeometry, implant thickness and polyurethane chemistry on the foreign body response to subcutaneous implants.
    Ward WK; Slobodzian EP; Tiekotter KL; Wood MD
    Biomaterials; 2002 Nov; 23(21):4185-92. PubMed ID: 12194521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titanium-coated Dacron velour: a study of interfacial connective tissue formation.
    Yan JY; Cooke FW; Vaskelis PS; von Recum AF
    J Biomed Mater Res; 1989 Feb; 23(2):171-89. PubMed ID: 2523396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibrous capsule formation in response to ultrahigh molecular weight polyethylene treated with peptides that influence adhesion.
    Johnson R; Harrison D; Tucci M; Tsao A; Lemos M; Puckett A; Hughes JL; Benghuzzi H
    Biomed Sci Instrum; 1997; 34():47-52. PubMed ID: 9603011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of the mouse peritoneal cavity for screening for biocompatibility of polymers.
    Wortman RS; Merritt K; Brown SA
    Biomater Med Devices Artif Organs; 1983; 11(1):103-14. PubMed ID: 6615990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.